1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
//! # Manchester Decoder
//!
//! Features:
//!
//! * Decode monotonically sampled data stream that is Manchester modulated
//! like it is used in Philips RC5
//!
//! <https://techdocs.altium.com/display/FPGA/Philips+RC5+Infrared+Transmission+Protocol>
//!
//! * High/low IN-Activitity configuration
//! * Automatic start and end of datagram detection
//! * Sampling needs to be 3 times the length of half a bit. (i.e. only a
//! single periodic timer is needed), for a infrared receiver
//! 889 µs halfbit period => the periodic timer should run all 297 µs.
//!
//! # Manchester Modulation
//!
//! <https://en.wikipedia.org/wiki/Manchester_code>
//!
//!
//! * A datagram starts after a pause period longer than the time of two bits
//! * A datagram is finished if their is no edge anymore longer than a bit
//! period and all subsequent samples are at inactive level
//! * all other situations are treated as errors and are rejected
//! * Bit order of a datagram:
//! * The first bit received is the most significant bit (MSB) and
//! the last bit
//!
//!
//! ## Receiving Algorithm Details
//!
//! A Periodic sampling is used.
//!
//! * Three samples per half bit period, will do. It gives a one third (of half period)
//! tolerance. And allows for one third (of half period) where the signal is
//! expected to be stable.
//!
//! Thus, the Philips half bit time can vary 889 µs +/- 296 µs = [595; 1175] µs
//!
//! * For every bit there is an edge at the transition from first half bit to
//! second half bit. This is period is used to synchronize bit value measurement
//!
//! * The first bit value must be pre-known, because it determines where the
//! synchronization edges are to be expected:
//!
//! |
//! # Example
//!
//! The lib runs in no_std environments
//!
//! ```ignore
//! #![deny(warnings)]
//! #![deny(unsafe_code)]
//! #![no_main]
//! #![no_std]
//!
//! use nucleo_stm32g071rb as board; // it also includes mem, defmt
//!
//! use board::hal::prelude::*;
//! use board::hal::stm32;
//! use board::hal::nb::block;
//!
//! use manchester_code::{InactivityLevel, FirstBitExpectation, BitOrder, Decoder};
//!
//! #[cortex_m_rt::entry]
//! fn main() -> ! {
//! let dp = stm32::Peripherals::take().expect("cannot take peripherals");
//! let mut rcc = dp.RCC.constrain();
//!
//! let gpioa = dp.GPIOA.split(&mut rcc);
//! let infrared = gpioa.pa8.into_pull_up_input();
//!
//! let mut timer = dp.TIM17.timer(&mut rcc);
//! timer.start(297.us());
//! let mut receiver = Decoder::new(
//! InactivityLevel::High,
//! FirstBitExpectation::Zero,
//! BitOrder::LittleEndian);
//! loop {
//! match receiver.next(infrared.is_high().unwrap()) {
//! None => (),
//! Some(t) => if t.length() > 2 {
//! defmt::println!("Datagram: {:?}", t ); },
//! };
//! block!(timer.wait()).unwrap();
//! }
//! }
//! ```
#![no_std]
#![deny(warnings)]
#![deny(unsafe_code)]
use defmt::Format;
use core::iter::Iterator;
use core::ops::Index;
use embedded_hal::Pwm;
/// BitOrder or endian describes the ordering of bits during transmission
///
/// Big endian: MSB is transmitted first; LSB is transmitted last
/// Little endian: LSB is transmitted first; MSB is transmitted last
#[derive(Copy, Clone, Debug)]
pub enum BitOrder {
BigEndian,
LittleEndian,
}
/// Representation of a datagram
///
/// The total length is limited to 128 bits
/// The bits of a telegram are internally enumerated from 0 to 127.
/// A default datagram is expected to be empty (i.e. containing zero bits)
#[derive(Default, Copy, Clone, Debug)]
pub struct Datagram {
length_in_bit: u8,
buffer: u128,
}
#[derive(Debug)]
struct Error;
impl Datagram {
/// Add a bit to a datagram
///
/// The new bit is placed at index zero.
/// The index of all previously added bits gets increased by one.
///
/// # Arguments
///
/// * `bit` - The bit value to record at index 0
/// * `bit_order`- The bit order either BigEndian or LittleEndian determines
/// if the bit is added at the LSB or MSB position
///
/// # Returns
///
/// * Error - if the datagram is already filled up to its capacity.
/// * () - if the bit was successfully added
fn add_bit(&mut self, bit: bool, order: BitOrder) -> Result<(), Error> {
if self.length_in_bit == 127 {
Err(Error)
} else {
match order {
BitOrder::BigEndian => {
self.buffer <<= 1;
if bit {
self.buffer += 1;
};
}
BitOrder::LittleEndian => {
if bit {
self.buffer += 1 << self.length_in_bit;
}
}
}
self.length_in_bit += 1;
Ok(())
}
}
pub fn len(&self) -> u8 {
self.length_in_bit
}
pub fn is_empty(&self) -> bool {
0 == self.length_in_bit
}
/// Extract a data slice from the datagram
///
/// # Args
///
/// * `min` - start index (included)
/// * `max` - max index (not included)
///
/// # Returns
///
/// the extracted value
///
/// # Panics
/// if 0 <= min < max <= len() is violated
///
/// # Example
/// ```rust
///
/// use manchester_code::Datagram;
///
/// let datagram = Datagram::new("0-111_10101_00001111");
/// assert_eq!(0b1111, datagram.extract_data(0, 4));
/// assert_eq!(0b1111, datagram.extract_data(0, 8));
/// assert_eq!(0b1111, datagram.extract_data(datagram.len()-5, datagram.len()));
/// ```
pub fn extract_data(&self, min: u8, max: u8) -> u128 {
if max > self.length_in_bit {
panic!("Max index to big");
}
if min >= max {
panic!("Min index to greater than max index");
}
let mut value = 0_u128;
for index in min..max {
let mask: u128 = 1 << (max + min - index - 1);
let bit = if (mask & self.buffer) == 0 { &0 } else { &1 };
value <<= 1;
value += bit;
}
value
}
/// Create a new datagram from "binary" string
///
/// # Arguments
///
/// * `bit_repr` - Bit representation as string of zeros and ones.
/// Arbitrary delimiter signs (for readability) are ignored
/// # Example
///
/// ```rust
/// use manchester_code::Datagram;
///
/// let datagram = Datagram::new("0-111_10101_00001111");
/// ```
pub fn new(bit_repr: &str) -> Self {
let mut datagram = Datagram::default();
for bit in bit_repr.bytes() {
match bit {
b'0' => datagram.add_bit(false, BitOrder::BigEndian).unwrap(),
b'1' => datagram.add_bit(true, BitOrder::BigEndian).unwrap(),
_ => (),
}
}
datagram
}
fn into_big_endian_iter(self) -> DatagramBigEndianIterator {
DatagramBigEndianIterator {
datagram: self,
index: self.len(),
}
}
fn into_little_endian_iter(self) -> DatagramLittleEndianIterator {
DatagramLittleEndianIterator {
datagram: self,
index: 0,
}
}
}
impl Index<u8> for Datagram {
type Output = u128;
/// Access the n-th element via index
///
/// # Panics
///
/// * if the index is out of range
///
/// # Example
///
/// ```rust
/// use manchester_code::Datagram;
///
/// let datagram = Datagram::new("0-111_10101_00001111");
/// assert_eq!(1, datagram[0]);
/// assert_eq!(0, datagram[5]);
/// ```
fn index(&self, index: u8) -> &Self::Output {
if index >= self.length_in_bit {
panic!("Wrong Index")
}
let mask: u128 = 1 << index;
if mask & self.buffer == 0 {
&0
} else {
&1
}
}
}
impl PartialEq for Datagram {
fn eq(&self, other: &Self) -> bool {
self.buffer == other.buffer && self.length_in_bit == other.length_in_bit
}
}
impl Eq for Datagram {}
impl Format for Datagram {
fn format(&self, f: defmt::Formatter) {
for index in 0..self.length_in_bit {
if 0 == index % 4 {
defmt::write!(f, "-");
}
if 1 == self[self.length_in_bit - 1 - index] {
defmt::write!(f, "1");
} else {
defmt::write!(f, "0");
}
}
}
}
#[derive(Debug)]
pub struct DatagramBigEndianIterator {
datagram: Datagram,
index: u8,
}
impl Iterator for DatagramBigEndianIterator {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
if 0 < self.index {
self.index -= 1;
Some(1 == self.datagram[self.index])
} else {
None
}
}
}
#[derive(Debug)]
pub struct DatagramLittleEndianIterator {
datagram: Datagram,
index: u8,
}
impl Iterator for DatagramLittleEndianIterator {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
if self.datagram.len() > self.index {
self.index += 1;
Some(1 == self.datagram[self.index - 1])
} else {
None
}
}
}
/// Encodes a datagram to Manchester code
///
/// The encoder turns into an iterator.
/// the encoding happens by calling the iterator.
///
/// # Example
///
/// ```rust
/// use manchester_code::{
/// Datagram,
/// DatagramBigEndianIterator,
/// Encoder};
///
/// let mut encoder = Encoder::<DatagramBigEndianIterator>::new(Datagram::new("01"));
/// assert_eq!(Some(true), encoder.next());
/// assert_eq!(Some(false), encoder.next());
/// assert_eq!(Some(false), encoder.next());
/// assert_eq!(Some(true), encoder.next());
/// assert_eq!(None, encoder.next());
/// ```
#[derive(Debug)]
pub struct Encoder<I> {
datagram_iter: I,
first_half_bit: bool,
last_value: Option<bool>,
}
impl Encoder<DatagramBigEndianIterator> {
/// Create a new Encoder ready to encode the datagram passed along
///
/// # Arguments
///
/// * `datagram` - the datagram to be encoded
pub fn new(d: Datagram) -> Self {
let mut datagram_iter = d.into_big_endian_iter();
let last_value = datagram_iter.next();
Encoder::<DatagramBigEndianIterator> {
datagram_iter,
first_half_bit: true,
last_value,
}
}
}
impl Encoder<DatagramLittleEndianIterator> {
/// Create a new Encoder ready to encode the datagram passed along
///
/// # Arguments
///
/// * `datagram` - the datagram to be encoded
pub fn new(d: Datagram) -> Self {
let mut datagram_iter = d.into_little_endian_iter();
let last_value = datagram_iter.next();
Encoder::<DatagramLittleEndianIterator> {
datagram_iter,
first_half_bit: true,
last_value,
}
}
}
impl<I: Iterator<Item = bool>> Iterator for Encoder<I> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
match self.last_value {
Some(bit) => {
if self.first_half_bit {
self.first_half_bit = false;
Some(!bit)
} else {
self.first_half_bit = true;
self.last_value = self.datagram_iter.next();
Some(bit)
}
}
None => None,
}
}
}
/// Inactivity level is the level the Pin where the infrared receiver is attached to
/// takes if no datagram is transmitted
pub enum InactivityLevel {
High,
Low,
}
/// A priori knowledge about the first expected bit of a telegram
///
/// It is needed for correct decoding if the datagram length is unknown
pub enum FirstBitExpectation {
Zero,
One,
}
/// Decode a Manchester encoded stream of periodically taken samples into
/// a datagram.
pub struct Decoder {
// Config data
high_inactivity: bool,
first_bit_is_one: bool,
bit_order: BitOrder,
// Collected output data
datagram: Datagram,
// Internal processing control data
previous_sample: bool,
edge_distance: u8,
recording_distance: u8,
receiving_started: bool,
record_marker_reached: bool,
}
const SAMPLES_PER_HALFBIT_PERIOD: u8 = 3;
const TOLERANCE: u8 = 1;
// ___---___------ e - first edge
// xxx012345678901 x - exit criteria no bits are send anymore
// f----tttt--xxx t - tolerance range an edge is expected
const LOWER_BARRIER: u8 = 2 * SAMPLES_PER_HALFBIT_PERIOD - TOLERANCE;
const UPPER_BARRIER: u8 = 2 * SAMPLES_PER_HALFBIT_PERIOD + TOLERANCE;
const NO_EDGE_EXIT_LIMIT: u8 = 3 * SAMPLES_PER_HALFBIT_PERIOD;
impl Decoder {
/// Create an instance of a new manchester encoder
///
/// # Arguments
///
/// * `high_inactivity` - A *true* value expects the input pin state high
/// when nothing is received
/// * `first_bit_is_one` - A *true value enforces the bit recording to start
/// with a "1". This is important to know upfront
/// where a new bit starts
/// * `bit_order` - Either BigEndian (MSP is received first) or
/// LittleEndian (LSB is received first)
pub const fn new(
inactivity_level: InactivityLevel,
first_bit_expectation: FirstBitExpectation,
bit_order: BitOrder,
) -> Self {
let high_inactivity = match inactivity_level {
InactivityLevel::High => true,
InactivityLevel::Low => false,
};
let first_bit_is_one = match first_bit_expectation {
FirstBitExpectation::One => true,
FirstBitExpectation::Zero => false,
};
Decoder {
datagram: Datagram {
buffer: 0,
length_in_bit: 0,
},
previous_sample: high_inactivity,
edge_distance: NO_EDGE_EXIT_LIMIT,
recording_distance: NO_EDGE_EXIT_LIMIT,
receiving_started: false,
high_inactivity,
first_bit_is_one,
record_marker_reached: false,
bit_order,
}
}
/// Sample a manchester modulated signal periodically and extract datagrams
///
/// To cover some jitter the sampling rate is three times the half bit frequency
/// i.e. an Infrared manchester decoded bit lasts 2x 889 us),
/// Thus sampling period should be 296 us.
///
/// Note: three times the bit frequency is good enough to consider the Nyquist
/// criterion and some potential jitter in sending frequency.
///
/// # Arguments
///
/// * `sample` - the level of the pin true equals high, false equals low
///
/// # Returns
///
/// Option of an infrared datagram
///
/// * None - if no complete datagram is received
/// * Some(datagram) - a completely received datagram
///
pub fn next(&mut self, sample: bool) -> Option<Datagram> {
// To understand the algorithm record marker are introduced.
//
// Record marker are the sample taken directly after the edge
// in the middle of the transmission of a bit
// As of the manchester protocol definition, there must be always
// an edge in the middle of transmission of the bit.
//
// Example: Start with "1" (high inactivity)
//
// |bit_1|bit_0|bit_0 - The bits
// -------...------...---... - The signal
// ^ ^ ^ - The record marker
//
// Example: Start with "0" (high inactivity)
//
// |bit_0|bit_1|bit_1 - The bits
// ----------......---...--- - The signal
// ^ ^ ^ - The record marker
//
// At each record marker the bit value is determined and recorded
let mut return_value: Option<Datagram> = None;
if sample != self.previous_sample {
if !self.receiving_started {
// cover the start of the telegram
if self.first_bit_is_one {
// start with a "1"
// by protocol design it is guaranteed that there is a second edge
// within half-bit time aka within SAMPLES_PER_HALFBIT_PERIOD
if self.edge_distance <= SAMPLES_PER_HALFBIT_PERIOD + TOLERANCE {
// second edge at the record marker
self.record_marker_reached = true;
self.receiving_started = true;
} else {
// very first edge -> do nothing on purpose
}
} else {
// start with a "0"
// first edge is the record marker
self.record_marker_reached = true;
self.receiving_started = true;
}
}
if self.recording_distance >= LOWER_BARRIER && self.recording_distance <= UPPER_BARRIER
{
self.record_marker_reached = true;
}
if self.record_marker_reached {
// In the middle of a bit transmission the value is derived from the new sample
self.datagram
.add_bit(sample ^ !self.high_inactivity, self.bit_order)
.unwrap();
// reset internal data for the next record_marker
self.recording_distance = 1;
self.record_marker_reached = false;
}
self.previous_sample = sample;
self.edge_distance = 1;
} else {
self.edge_distance += 1;
self.recording_distance += 1;
}
if self.edge_distance > NO_EDGE_EXIT_LIMIT {
// end of datagram condition no edge anymore
if !self.datagram.is_empty() && sample ^ !self.high_inactivity {
return_value = Some(self.datagram);
self.receiving_started = false;
}
self.datagram = Datagram::default();
self.edge_distance -= 1; // prevent number overflow
}
if self.recording_distance > NO_EDGE_EXIT_LIMIT {
self.recording_distance -= 1; // prevent number overflow
}
return_value
}
}
/// Control sending of datagrams, manage infrared radiation pollution
///
/// The InfraredEmitter behaves socially by enforcing a pause time between
/// subsequent
/// Required resources:
///
/// * A configured PWM - typically at a frequency of 36..38 kHz (RC5 protocol)
/// * A facility that periodically runs half bit sending, e.g. a timer ISR
/// typically at a period of 889 µs (half bit time, RC5 protocol)
///
/// # Example
///
/// TODO
#[derive(Debug)]
pub struct InfraredEmitter<P, C, I> {
encoder: Option<Encoder<I>>,
max_pause_cycles: u8,
current_pause_cycles: u8,
pwm: P,
channel: C,
}
impl<P, C, D, I> InfraredEmitter<P, C, I>
where
P: Pwm + Pwm<Channel = C> + Pwm<Duty = D>,
C: Copy,
D: core::ops::Mul<Output = D> + core::ops::Div<Output = D>,
I: Iterator<Item = bool>,
{
/// Create a new infrared Emitter
///
/// # Arguments
///
/// * `pause_cycles` - configures the time between subsequent datagram
/// emissions. The total duration is half-bit-time (889 µs)
/// times number of pause bit cycles. In the pause time
/// no infrared radiation is emitted and other
/// participants can occupy the radiation space.
/// * `pwm` - the PWM to be used for ir pulse emission
/// * `channel` - the channel to be used by the PWM
pub fn new(pause_cycles: u8, pwm: P, channel: C) -> Self {
InfraredEmitter {
encoder: None,
max_pause_cycles: pause_cycles,
current_pause_cycles: 0,
pwm,
channel,
}
}
/// Progress on sending a datagram by emitting a half bit
///
/// This function needs to be called every half-bit period, i.e. each 889 µs.
/// The periodically required call is most likely delegated to a timer ISR.
///
/// half-bit emitting happens by enabling/disabling a a properly configured
/// PWM.
pub fn send_half_bit(&mut self) {
match &mut self.encoder {
Some(encoder) => match encoder.next() {
Some(half_bit) => {
if half_bit {
self.pwm.enable(self.channel);
} else {
self.pwm.disable(self.channel);
}
}
None => {
self.pwm.disable(self.channel);
self.encoder = None;
self.current_pause_cycles = 0;
}
},
None => {
// the pwm is already disabled -> manage pause period
self.current_pause_cycles += 1;
}
}
}
}
impl<P, C, D> InfraredEmitter<P, C, DatagramBigEndianIterator>
where
P: Pwm + Pwm<Channel = C> + Pwm<Duty = D>,
C: Copy,
D: core::ops::Mul<Output = D> + core::ops::Div<Output = D>,
{
/// Immediately start sending a datagram if possible
///
/// Sending is possible iff there is no sending procedure in progress.
/// A call to this function is not blocking
///
/// # Arguments
///
/// * `datagram` - The datagram to be send
/// * `sending_power` - The duty cycle of the pwm in percent
/// should be less than or equal 25 (percent)
/// Is reduced to 25 if a higher value is given.
/// Lower sending power is appropriate for pairing datagrams.
///
/// # Returns
///
/// * *true* - if sending was initiated
/// * *false* - if sending was not possible to initiate
pub fn send_if_possible(&mut self, datagram: Datagram, sending_power: D) -> bool {
if self.current_pause_cycles < self.max_pause_cycles {
false
} else {
// let mut sending_power: D = if sending_power > 25 { 25 } else { sending_power };
// let duty = self.pwm.get_max_duty() * sending_power / 100;
// self.pwm.set_duty(self.channel, duty);
self.pwm.set_duty(self.channel, sending_power);
self.encoder = Some(Encoder::<DatagramBigEndianIterator>::new(datagram));
true
}
}
}
impl<P, C, D> InfraredEmitter<P, C, DatagramLittleEndianIterator>
where
P: Pwm + Pwm<Channel = C> + Pwm<Duty = D>,
C: Copy,
D: core::ops::Mul<Output = D> + core::ops::Div<Output = D>,
{
/// Immediately start sending a datagram if possible
///
/// Sending is possible iff there is no sending procedure in progress.
/// A call to this function is not blocking
///
/// # Arguments
///
/// * `datagram` - The datagram to be send
/// * `sending_power` - The duty cycle of the pwm in percent
/// should be less than or equal 25 (percent)
/// Is reduced to 25 if a higher value is given.
/// Lower sending power is appropriate for pairing datagrams.
///
/// # Returns
///
/// * *true* - if sending was initiated
/// * *false* - if sending was not possible to initiate
pub fn send_if_possible(&mut self, datagram: Datagram, sending_power: D) -> bool {
if self.current_pause_cycles < self.max_pause_cycles {
false
} else {
// let mut sending_power: D = if sending_power > 25 { 25 } else { sending_power };
// let duty = self.pwm.get_max_duty() * sending_power / 100;
// self.pwm.set_duty(self.channel, duty);
self.pwm.set_duty(self.channel, sending_power);
self.encoder = Some(Encoder::<DatagramLittleEndianIterator>::new(datagram));
true
}
}
}
#[cfg(test)]
mod tests;