1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
use crate::Rational;
use malachite_base::num::arithmetic::traits::{Sign, UnsignedAbs};
use malachite_base::num::basic::traits::One;
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;
use malachite_nz::natural::Natural;
use std::cmp::Ordering;
fn partial_cmp_abs_unsigned<T: Copy + One + Ord + Sign + SignificantBits>(
x: &Rational,
other: &T,
) -> Option<Ordering>
where
Natural: From<T> + PartialOrd<T>,
{
// First check if either value is zero
let self_sign = x.numerator_ref().sign();
let other_sign = other.sign();
let sign_cmp = self_sign.cmp(&other_sign);
if sign_cmp != Ordering::Equal || self_sign == Ordering::Equal {
return Some(sign_cmp);
}
// Then check if one is < 1 and the other is > 1
let self_cmp_one = x.numerator.cmp(&x.denominator);
let other_cmp_one = other.cmp(&T::ONE);
let one_cmp = self_cmp_one.cmp(&other_cmp_one);
if one_cmp != Ordering::Equal {
return Some(one_cmp);
}
// Then compare numerators and denominators
let n_cmp = x.numerator.partial_cmp(other).unwrap();
let d_cmp = x.denominator.cmp(&Natural::ONE);
if n_cmp == Ordering::Equal && d_cmp == Ordering::Equal {
return Some(Ordering::Equal);
} else {
let nd_cmp = n_cmp.cmp(&d_cmp);
if nd_cmp != Ordering::Equal {
return Some(nd_cmp);
}
}
// Then compare floor ∘ log_2 ∘ abs
let log_cmp = x
.floor_log_base_2_abs()
.cmp(&i64::exact_from(other.significant_bits() - 1));
if log_cmp != Ordering::Equal {
return Some(log_cmp);
}
// Finally, cross-multiply.
Some(x.numerator.cmp(&(&x.denominator * Natural::from(*other))))
}
macro_rules! impl_unsigned {
($t: ident) => {
impl PartialOrdAbs<$t> for Rational {
/// Compares the absolute values of a [`Rational`] and an unsigned primitive integer.
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Examples
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
partial_cmp_abs_unsigned(self, other)
}
}
impl PartialOrdAbs<Rational> for $t {
/// Compares the absolute values of an unsigned primitive integer and a [`Rational`].
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
///
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering> {
other.partial_cmp_abs(self).map(Ordering::reverse)
}
}
};
}
apply_to_unsigneds!(impl_unsigned);
fn partial_cmp_abs_signed<
U: Copy + One + Ord + Sign + SignificantBits,
S: Copy + Sign + SignificantBits + UnsignedAbs<Output = U>,
>(
x: &Rational,
other: &S,
) -> Option<Ordering>
where
Natural: From<U> + PartialOrd<U>,
{
// First check if either value is zero
let self_sign = x.numerator_ref().sign();
let other_abs = other.unsigned_abs();
let other_sign = other_abs.sign();
let sign_cmp = self_sign.cmp(&other_sign);
if sign_cmp != Ordering::Equal || self_sign == Ordering::Equal {
return Some(sign_cmp);
}
// Then check if one is < 1 and the other is > 1
let self_cmp_one = x.numerator.cmp(&x.denominator);
let other_cmp_one = other_abs.cmp(&U::ONE);
let one_cmp = self_cmp_one.cmp(&other_cmp_one);
if one_cmp != Ordering::Equal {
return Some(one_cmp);
}
// Then compare numerators and denominators
let n_cmp = x.numerator.partial_cmp(&other_abs).unwrap();
let d_cmp = x.denominator.cmp(&Natural::ONE);
if n_cmp == Ordering::Equal && d_cmp == Ordering::Equal {
return Some(Ordering::Equal);
} else {
let nd_cmp = n_cmp.cmp(&d_cmp);
if nd_cmp != Ordering::Equal {
return Some(nd_cmp);
}
}
// Then compare floor ∘ log_2 ∘ abs
let log_cmp = x
.floor_log_base_2_abs()
.cmp(&i64::exact_from(other.significant_bits() - 1));
if log_cmp != Ordering::Equal {
return Some(log_cmp);
}
// Finally, cross-multiply.
Some(
x.numerator
.cmp(&(&x.denominator * Natural::from(other_abs))),
)
}
macro_rules! impl_signed {
($t: ident) => {
impl PartialOrdAbs<$t> for Rational {
/// Compares the absolute values of a [`Rational`] and a signed primitive integer.
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Examples
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &$t) -> Option<Ordering> {
partial_cmp_abs_signed(self, other)
}
}
impl PartialOrdAbs<Rational> for $t {
/// Compares the absolute values of a signed primitive integer and a [`Rational`].
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `other.significant_bits()`.
///
/// See [here](super::partial_cmp_abs_primitive_int#partial_cmp_abs).
#[inline]
fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering> {
other.partial_cmp_abs(self).map(Ordering::reverse)
}
}
};
}
apply_to_signeds!(impl_signed);