1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use crate::{ComparableFloat, ComparableFloatRef, Float};
use std::cmp::Ordering;

impl PartialEq for Float {
    /// Compares two [`Float`]s for equality.
    ///
    /// This implementation follows the IEEE 754 standard. `NaN` is not equal to anything, not even
    /// itself. Positive zero is equal to negative zero. [`Float`]s with different precisions are
    /// equal if they represent the same numeric value.
    ///
    /// For different equality behavior, consider using [`ComparableFloat`] or
    /// [`ComparableFloatRef`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
    /// use malachite_float::Float;
    ///
    /// assert_ne!(Float::NAN, Float::NAN);
    /// assert_eq!(Float::ZERO, Float::ZERO);
    /// assert_eq!(Float::NEGATIVE_ZERO, Float::NEGATIVE_ZERO);
    /// assert_eq!(Float::ZERO, Float::NEGATIVE_ZERO);
    ///
    /// assert_eq!(Float::ONE, Float::ONE);
    /// assert_ne!(Float::ONE, Float::TWO);
    /// assert_eq!(Float::ONE, Float::one_prec(100));
    /// ```
    fn eq(&self, other: &Float) -> bool {
        match (self, other) {
            (Float(Infinity { sign: s_x }), Float(Infinity { sign: s_y })) => s_x == s_y,
            (float_either_zero!(), float_either_zero!()) => true,
            (
                Float(Finite {
                    sign: s_x,
                    exponent: e_x,
                    significand: x,
                    ..
                }),
                Float(Finite {
                    sign: s_y,
                    exponent: e_y,
                    significand: y,
                    ..
                }),
            ) => e_x == e_y && s_x == s_y && x.cmp_normalized_no_shift(y) == Ordering::Equal,
            _ => false,
        }
    }
}

impl PartialEq for ComparableFloat {
    /// Compares two [`ComparableFloat`]s for equality.
    ///
    /// This implementation ignores the IEEE 754 standard in favor of an equality operation that
    /// respects the expected properties of symmetry, reflexivity, and transitivity. Using
    /// [`ComparableFloat`], `NaN`s are equal to themselves. There is a single, unique `NaN`;
    /// there's no concept of signalling `NaN`s. Positive and negative zero are two distinct
    /// values, not equal to each other. [`ComparableFloat`]s with different precisions are
    /// unequal.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
    /// use malachite_float::{ComparableFloat, Float};
    ///
    /// assert_eq!(ComparableFloat(Float::NAN), ComparableFloat(Float::NAN));
    /// assert_eq!(ComparableFloat(Float::ZERO), ComparableFloat(Float::ZERO));
    /// assert_eq!(ComparableFloat(Float::NEGATIVE_ZERO), ComparableFloat(Float::NEGATIVE_ZERO));
    /// assert_ne!(ComparableFloat(Float::ZERO), ComparableFloat(Float::NEGATIVE_ZERO));
    ///
    /// assert_eq!(ComparableFloat(Float::ONE), ComparableFloat(Float::ONE));
    /// assert_ne!(ComparableFloat(Float::ONE), ComparableFloat(Float::TWO));
    /// assert_ne!(ComparableFloat(Float::ONE), ComparableFloat(Float::one_prec(100)));
    /// ```
    #[inline]
    fn eq(&self, other: &ComparableFloat) -> bool {
        self.as_ref() == other.as_ref()
    }
}

impl Eq for ComparableFloat {}

impl<'a, 'b> PartialEq<ComparableFloatRef<'b>> for ComparableFloatRef<'a> {
    /// Compares two [`ComparableFloatRef`]s for equality.
    ///
    /// This implementation ignores the IEEE 754 standard in favor of an equality operation that
    /// respects the expected properties of symmetry, reflexivity, and transitivity. Using
    /// [`ComparableFloatRef`], `NaN`s are equal to themselves. There is a single, unique `NaN`;
    /// there's no concept of signalling `NaN`s. Positive and negative zero are two distinct
    /// values, not equal to each other. [`ComparableFloatRef`]s with different precisions are
    /// unequal.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is
    /// `max(self.significant_bits(), other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
    /// use malachite_float::{ComparableFloatRef, Float};
    ///
    /// assert_eq!(ComparableFloatRef(&Float::NAN), ComparableFloatRef(&Float::NAN));
    /// assert_eq!(ComparableFloatRef(&Float::ZERO), ComparableFloatRef(&Float::ZERO));
    /// assert_eq!(
    ///     ComparableFloatRef(&Float::NEGATIVE_ZERO),
    ///     ComparableFloatRef(&Float::NEGATIVE_ZERO)
    /// );
    /// assert_ne!(ComparableFloatRef(&Float::ZERO), ComparableFloatRef(&Float::NEGATIVE_ZERO));
    ///
    /// assert_eq!(ComparableFloatRef(&Float::ONE), ComparableFloatRef(&Float::ONE));
    /// assert_ne!(ComparableFloatRef(&Float::ONE), ComparableFloatRef(&Float::TWO));
    /// assert_ne!(ComparableFloatRef(&Float::ONE), ComparableFloatRef(&Float::one_prec(100)));
    /// ```
    fn eq(&self, other: &ComparableFloatRef<'b>) -> bool {
        match (&self.0, &other.0) {
            (float_nan!(), float_nan!()) => true,
            (Float(Infinity { sign: s_x }), Float(Infinity { sign: s_y }))
            | (Float(Zero { sign: s_x }), Float(Zero { sign: s_y })) => s_x == s_y,
            (
                Float(Finite {
                    sign: s_x,
                    exponent: e_x,
                    precision: p_x,
                    significand: x,
                }),
                Float(Finite {
                    sign: s_y,
                    exponent: e_y,
                    precision: p_y,
                    significand: y,
                }),
            ) => s_x == s_y && e_x == e_y && p_x == p_y && x == y,
            _ => false,
        }
    }
}

impl<'a> Eq for ComparableFloatRef<'a> {}