1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use fixed;
use geom::math::*;
use path_fill::Edge;
use geom::euclid;
use std::f64;
pub type FixedPoint32 = fixed::Fp32<fixed::_16>;
pub type FixedPoint64 = fixed::Fp64<fixed::_16>;
pub type TessVector = euclid::Vector2D<FixedPoint32>;
pub type TessPoint = euclid::Point2D<FixedPoint32>;
pub type TessPoint64 = euclid::Point2D<FixedPoint64>;
#[inline]
pub fn fixed(val: f32) -> FixedPoint32 { FixedPoint32::from_f32(val) }
#[inline]
fn x_aabb_test(a1: FixedPoint32, b1: FixedPoint32, a2: FixedPoint32, b2: FixedPoint32) -> bool {
let (min1, max1) = a1.min_max(b1);
let (min2, max2) = a2.min_max(b2);
min1 <= max2 && max1 >= min2
}
pub(crate) fn segment_intersection(
e1: &Edge,
e2: &Edge,
) -> Option<TessPoint> {
if !x_aabb_test(e1.upper.x, e1.lower.x, e2.upper.x, e2.lower.x) {
return None;
}
if e1.upper == e2.lower || e1.upper == e2.upper || e1.lower == e2.upper || e1.lower == e2.lower {
return None;
}
fn tess_point(x: f64, y: f64) -> TessPoint {
TessPoint::new(FixedPoint32::from_f64(x), FixedPoint32::from_f64(y))
}
let a1 = F64Point::new(e1.upper.x.to_f64(), e1.upper.y.to_f64());
let b1 = F64Point::new(e1.lower.x.to_f64(), e1.lower.y.to_f64());
let a2 = F64Point::new(e2.upper.x.to_f64(), e2.upper.y.to_f64());
let b2 = F64Point::new(e2.lower.x.to_f64(), e2.lower.y.to_f64());
let v1 = b1 - a1;
let v2 = b2 - a2;
debug_assert!(v2.x != 0.0 || v2.y != 0.0, "zero-length edge");
let v1_cross_v2 = v1.cross(v2);
let a2_a1_cross_v1 = (a2 - a1).cross(v1);
if v1_cross_v2 == 0.0 {
return None;
}
let sign_v1_cross_v2 = v1_cross_v2.signum();
let abs_v1_cross_v2 = f64::abs(v1_cross_v2);
let t = (a2 - a1).cross(v2) * sign_v1_cross_v2;
let u = a2_a1_cross_v1 * sign_v1_cross_v2;
if t >= 0.0 && t <= abs_v1_cross_v2 && u > 0.0 && u <= abs_v1_cross_v2 {
let threshold = 0.000_001;
if 1.0 - t / abs_v1_cross_v2 < threshold {
return Some(e1.lower);
}
if 1.0 - u / abs_v1_cross_v2 < threshold {
return Some(e2.lower);
}
let res = a1 + (v1 * t) / abs_v1_cross_v2;
let res = tess_point(res.x, res.y);
if res != e1.upper && res != e2.upper
&& res.y <= e1.lower.y && res.y <= e2.lower.y {
return Some(res);
}
}
None
}
pub fn compute_normal(v1: Vector, v2: Vector) -> Vector {
let epsilon = 1e-4;
let n1 = vector(-v1.y, v1.x);
let v12 = v1 + v2;
if v12.square_length() < epsilon {
return n1;
}
let tangent = v12.normalize();
let n = vector(-tangent.y, tangent.x);
let inv_len = n.dot(n1);
if inv_len.abs() < epsilon {
return n1;
}
n / inv_len
}
#[test]
fn test_compute_normal() {
fn assert_almost_eq(a: Vector, b: Vector) {
if (a - b).square_length() > 0.00001 {
panic!("assert almost equal: {:?} != {:?}", a, b);
}
}
assert_almost_eq(compute_normal(vector(1.0, 0.0), vector(0.0, 1.0)), vector(-1.0, 1.0));
assert_almost_eq(compute_normal(vector(1.0, 0.0), vector(1.0, 0.0)), vector(0.0, 1.0));
}