1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
#![cfg_attr(not(feature = "std"), no_std)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
use crate::aegis_128l::Aegis128L;
use hkdf::HkdfExtract;
use sha2::Sha256;
pub use subtle;
use subtle::ConstantTimeEq;
mod aegis_128l;
mod intrinsics;
#[cfg(feature = "docs")]
#[doc = include_str!("../design.md")]
pub mod design {}
#[cfg(feature = "docs")]
#[doc = include_str!("../perf.md")]
pub mod perf {}
/// The length of an authentication tag in bytes.
pub const TAG_LEN: usize = 16;
/// A stateful object providing fine-grained symmetric-key cryptographic services like hashing,
/// message authentication codes, pseudo-random functions, authenticated encryption, and more.
#[derive(Debug, Clone)]
pub struct Protocol {
transcript: HkdfExtract<Sha256>,
}
impl Protocol {
/// Creates a new protocol with the given domain.
#[inline]
pub fn new(domain: &str) -> Protocol {
// Initialize a protocol with an empty transcript.
let mut protocol = Protocol { transcript: HkdfExtract::new(None) };
// Append the Init op header to the transcript with the domain as the label.
//
// 0x01 || domain || right_encode(|domain|)
protocol.op_header(OpCode::Init, domain);
protocol
}
/// Mixes the given label and slice into the protocol state.
#[inline]
pub fn mix(&mut self, label: &str, input: &[u8]) {
// Append a Mix op header with the label to the transcript.
//
// 0x02 || label || right_encode(|label|)
self.op_header(OpCode::Mix, label);
// Append the input to the transcript with right-encoded length.
//
// input || right_encode(|input|)
self.transcript.input_ikm(input);
self.transcript.input_ikm(right_encode(&mut [0u8; 9], input.len() as u64 * 8));
}
/// Moves the protocol into a [`std::io::Write`] implementation, mixing all written data in a
/// single operation and passing all writes to `inner`.
///
/// Use [`MixWriter::into_inner`] to finish the operation and recover the protocol and `inner`.
#[inline]
#[cfg(feature = "std")]
pub fn mix_writer<W: std::io::Write>(mut self, label: &str, inner: W) -> MixWriter<W> {
// Append a Mix op header with the label to the transcript.
self.op_header(OpCode::Mix, label);
// Move the protocol to a MixWriter.
MixWriter { protocol: self, inner, len: 0 }
}
/// Derives output from the protocol's current state and fills the given slice with it.
///
/// The output is dependent on the protocol's prior transcript, the label, and the length of
/// `out`.
#[inline]
pub fn derive(&mut self, label: &str, out: &mut [u8]) {
// Append a Derive op header with the label to the transcript.
//
// 0x03 || label || right_encode(|label|)
self.op_header(OpCode::Derive, label);
// Perform a Mix operation with the output length.
self.mix("len", right_encode(&mut [0u8; 9], out.len() as u64 * 8));
// Derive a PRK via HKDF-Extract(kdk, transcript).
let (_, prk) = self.transcript.clone().finalize();
// Use HKDF-Expand and the PRK to derive a new KDK and the requested output.
let mut kdk = [0u8; 32];
prk.expand(b"kdk", &mut kdk).expect("should expand KDK");
prk.expand(b"output", out).expect("should expand output");
// Clear the transcript and prepare for HKDF-Extract(kdk', transcript).
self.transcript = HkdfExtract::new(Some(&kdk));
}
/// Derives output from the protocol's current state and returns it as an `N`-byte array.
#[inline]
pub fn derive_array<const N: usize>(&mut self, label: &str) -> [u8; N] {
let mut out = [0u8; N];
self.derive(label, &mut out);
out
}
/// Encrypts the given slice in place.
#[inline]
pub fn encrypt(&mut self, label: &str, in_out: &mut [u8]) {
// Append a Crypt op header with the label to the transcript.
//
// 0x04 || label || right_encode(|label|)
self.op_header(OpCode::Crypt, label);
// Perform a Mix operation with the plaintext length.
self.mix("len", right_encode(&mut [0u8; 9], in_out.len() as u64 * 8));
// Derive an AEGIS-128L key and nonce.
let kn = self.derive_array::<32>("key");
let (k, n) = kn.split_at(16);
let mut aegis = Aegis128L::new(
k.try_into().expect("should be 16 bytes"),
n.try_into().expect("should be 16 bytes"),
);
// Encrypt the plaintext.
aegis.encrypt(in_out);
// Finalize the AEGIS-128L tags.
let (_, tag256) = aegis.finalize();
// Perform a Mix operation with the 256-bit AEGIS-128L tag.
self.mix("tag", &tag256);
}
/// Decrypts the given slice in place.
#[inline]
pub fn decrypt(&mut self, label: &str, in_out: &mut [u8]) {
// Append a Crypt op header with the label to the transcript.
//
// 0x04 || label || right_encode(|label|)
self.op_header(OpCode::Crypt, label);
// Perform a Mix operation with the plaintext length.
self.mix("len", right_encode(&mut [0u8; 9], in_out.len() as u64 * 8));
// Derive an AEGIS-128L key and nonce.
let kn = self.derive_array::<32>("key");
let (k, n) = kn.split_at(16);
let mut aegis = Aegis128L::new(
k.try_into().expect("should be 16 bytes"),
n.try_into().expect("should be 16 bytes"),
);
// Decrypt the ciphertext.
aegis.decrypt(in_out);
// Finalize the AEGIS-128L tags.
let (_, tag256) = aegis.finalize();
// Perform a Mix operation with the 256-bit AEGIS-128L tag.
self.mix("tag", &tag256);
}
/// Seals the given mutable slice in place.
///
/// The last [`TAG_LEN`] bytes of the slice will be overwritten with the authentication tag.
#[inline]
pub fn seal(&mut self, label: &str, in_out: &mut [u8]) {
// Split the buffer into plaintext and tag.
let (in_out, tag128_out) = in_out.split_at_mut(in_out.len() - TAG_LEN);
// Append an AuthCrypt op header with the label to the transcript.
//
// 0x05 || label || right_encode(|label|)
self.op_header(OpCode::AuthCrypt, label);
// Perform a Mix operation with the plaintext length.
self.mix("len", right_encode(&mut [0u8; 9], in_out.len() as u64 * 8));
// Derive an AEGIS-128L key and nonce.
let kn = self.derive_array::<32>("key");
let (k, n) = kn.split_at(16);
let mut aegis = Aegis128L::new(
k.try_into().expect("should be 16 bytes"),
n.try_into().expect("should be 16 bytes"),
);
// Encrypt the plaintext.
aegis.encrypt(in_out);
// Finalize the AEGIS-128L tags.
let (tag128, tag256) = aegis.finalize();
// Append the 128-bit AEGIS-128L tag to the ciphertext.
tag128_out.copy_from_slice(&tag128);
// Perform a Mix operation with the 256-bit AEGIS-128L tag.
self.mix("tag", &tag256);
}
/// Opens the given mutable slice in place. Returns the plaintext slice of `in_out` if the input
/// was authenticated. The last [`TAG_LEN`] bytes of the slice will be unmodified.
#[inline]
#[must_use]
pub fn open<'ct>(&mut self, label: &str, in_out: &'ct mut [u8]) -> Option<&'ct [u8]> {
// Split the buffer into ciphertext and tag.
let (in_out, tag128_in) = in_out.split_at_mut(in_out.len() - TAG_LEN);
// Append an AuthCrypt op header with the label to the transcript.
//
// 0x05 || label || right_encode(|label|)
self.op_header(OpCode::AuthCrypt, label);
// Perform a Mix operation with the plaintext length.
self.mix("len", right_encode(&mut [0u8; 9], in_out.len() as u64 * 8));
// Derive an AEGIS-128L key and nonce.
let kn = self.derive_array::<32>("key");
let (k, n) = kn.split_at(16);
let mut aegis = Aegis128L::new(
k.try_into().expect("should be 16 bytes"),
n.try_into().expect("should be 16 bytes"),
);
// Decrypt the ciphertext.
aegis.decrypt(in_out);
// Finalize the AEGIS-128L tags.
let (tag128, tag256) = aegis.finalize();
// Perform a Mix operation with the 256-bit AEGIS-128L tag.
self.mix("tag", &tag256);
// Check the tag against the counterfactual tag in constant time.
if tag128_in.ct_eq(&tag128).into() {
// If the tag is verified, then the ciphertext is authentic. Return the slice of the
// input which contains the plaintext.
Some(in_out)
} else {
// Otherwise, the ciphertext is inauthentic and we zero out the inauthentic plaintext to
// avoid bugs where the caller forgets to check the return value of this function and
// discloses inauthentic plaintext.
in_out.fill(0);
None
}
}
/// Clones the protocol and mixes `secrets` plus 64 random bytes into the clone. Passes the
/// clone to `f` and if `f` returns `Some(R)`, returns `R`. Iterates until a value is returned.
#[cfg(feature = "hedge")]
#[must_use]
pub fn hedge<R>(
&self,
mut rng: impl rand_core::CryptoRngCore,
secrets: &[impl AsRef<[u8]>],
max_tries: usize,
f: impl Fn(&mut Self) -> Option<R>,
) -> R {
for _ in 0..max_tries {
// Clone the protocol's state.
let mut clone = self.clone();
// Mix each secret into the clone.
for s in secrets {
clone.mix("secret", s.as_ref());
}
// Mix a random value into the clone.
let mut r = [0u8; 64];
rng.fill_bytes(&mut r);
clone.mix("nonce", &r);
// Call the given function with the clone and return if the function was successful.
if let Some(r) = f(&mut clone) {
return r;
}
}
unreachable!("unable to hedge a valid value in {} tries", max_tries);
}
/// Appends an operation header with an optional label to the protocol transcript.
#[inline]
fn op_header(&mut self, op_code: OpCode, label: &str) {
// Append the operation code and label to the transcript:
//
// op_code || label || right_encode(|label|)
self.transcript.input_ikm(&[op_code as u8]);
self.transcript.input_ikm(label.as_bytes());
self.transcript.input_ikm(right_encode(&mut [0u8; 9], label.len() as u64 * 8));
}
}
/// All Lockstitch operation types.
#[derive(Debug, Clone, Copy)]
enum OpCode {
/// Initialize a protocol with a domain separation string.
Init = 0x01,
/// Mix a labeled input into the protocol transcript.
Mix = 0x02,
/// Derive a labeled output from the protocol transcript.
Derive = 0x03,
/// Encrypt or decrypt a labeled input using the protocol transcript as a key.
Crypt = 0x04,
/// Seal or open a labeled input using the protocol transcript as a key.
AuthCrypt = 0x05,
}
/// A [`std::io::Write`] implementation which combines all written data into a single `Mix`
/// operation and passes all writes to an inner writer.
#[cfg(feature = "std")]
#[derive(Debug)]
pub struct MixWriter<W> {
protocol: Protocol,
inner: W,
len: u64,
}
#[cfg(feature = "std")]
impl<W: std::io::Write> MixWriter<W> {
/// Finishes the `Mix` operation and returns the inner [`Protocol`] and writer.
#[inline]
pub fn into_inner(mut self) -> (Protocol, W) {
// Append the right-encoded length to the transcript.
self.protocol.transcript.input_ikm(right_encode(&mut [0u8; 9], self.len * 8));
(self.protocol, self.inner)
}
}
#[cfg(feature = "std")]
impl<W: std::io::Write> std::io::Write for MixWriter<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
// Track the written length.
self.len += buf.len() as u64;
// Append the written slice to the protocol transcript.
self.protocol.transcript.input_ikm(buf);
// Pass the slice to the inner writer and return the result.
self.inner.write(buf)
}
#[inline]
fn flush(&mut self) -> std::io::Result<()> {
self.inner.flush()
}
}
/// Encodes a value using [NIST SP 800-185][]'s `right_encode`.
///
/// [NIST SP 800-185]: https://www.nist.gov/publications/sha-3-derived-functions-cshake-kmac-tuplehash-and-parallelhash
#[inline]
fn right_encode(buf: &mut [u8; 9], value: u64) -> &[u8] {
let len = buf.len();
buf[..len - 1].copy_from_slice(&value.to_be_bytes());
let n = (len - 1 - value.leading_zeros() as usize / 8).max(1);
buf[len - 1] = n as u8;
&buf[len - n - 1..]
}
#[cfg(all(test, feature = "std"))]
mod tests {
use std::io::{self, Cursor};
use expect_test::expect;
use super::*;
#[test]
fn known_answers() {
let mut protocol = Protocol::new("com.example.kat");
protocol.mix("first", b"one");
protocol.mix("second", b"two");
expect!["20ea2bf0d8234351"].assert_eq(&hex::encode(protocol.derive_array::<8>("third")));
let mut plaintext = b"this is an example".to_vec();
protocol.encrypt("fourth", &mut plaintext);
expect!["e06289eeea8f938c65ca984eb1c1a9df6557"].assert_eq(&hex::encode(plaintext));
let plaintext = b"this is an example";
let mut sealed = vec![0u8; plaintext.len() + TAG_LEN];
sealed[..plaintext.len()].copy_from_slice(plaintext);
protocol.seal("fifth", &mut sealed);
expect!["c5e08d9df027dab5f83c30314c098bd65eb4ac6866dd154802b47b0c4cce5b14ab7a"]
.assert_eq(&hex::encode(sealed));
expect!["2ddaec8811f6092a"].assert_eq(&hex::encode(protocol.derive_array::<8>("sixth")));
}
#[test]
fn readers() {
let mut slices = Protocol::new("com.example.streams");
slices.mix("first", b"one");
slices.mix("second", b"two");
let streams = Protocol::new("com.example.streams");
let mut streams_write = streams.mix_writer("first", io::sink());
io::copy(&mut Cursor::new(b"one"), &mut streams_write)
.expect("cursor reads and sink writes should be infallible");
let (streams, _) = streams_write.into_inner();
let mut output = Vec::new();
let mut streams_write = streams.mix_writer("second", &mut output);
io::copy(&mut Cursor::new(b"two"), &mut streams_write)
.expect("cursor reads and sink writes should be infallible");
let (mut streams, output) = streams_write.into_inner();
assert_eq!(slices.derive_array::<16>("third"), streams.derive_array::<16>("third"));
assert_eq!(b"two".as_slice(), output);
}
#[test]
#[cfg(feature = "hedge")]
fn hedging() {
let mut hedger = Protocol::new("com.example.hedge");
hedger.mix("first", b"one");
let tag = hedger.hedge(rand::thread_rng(), &[b"two"], 10_000, |clone| {
let tag = clone.derive_array::<16>("tag");
(tag[0] == 0).then_some(tag)
});
assert_eq!(tag[0], 0);
}
#[test]
fn edge_case() {
let mut sender = Protocol::new("");
let mut message = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
sender.encrypt("message", &mut message);
let tag_s = sender.derive_array::<TAG_LEN>("tag");
let mut receiver = Protocol::new("");
receiver.decrypt("message", &mut message);
let tag_r = receiver.derive_array::<TAG_LEN>("tag");
assert_eq!(message, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
assert_eq!(tag_s, tag_r);
}
#[test]
fn right_encode_injective() {
bolero::check!().with_type::<(u64, u64)>().cloned().for_each(|(a, b)| {
let mut buf_a = [0u8; 9];
let mut buf_b = [0u8; 9];
let a_e = right_encode(&mut buf_a, a);
let b_e = right_encode(&mut buf_b, b);
if a == b {
assert_eq!(a_e, b_e);
} else {
assert_ne!(a_e, b_e);
}
});
}
#[test]
fn encoded_label_injective() {
bolero::check!().with_type::<(Vec<u8>, Vec<u8>)>().cloned().for_each(|(a, b)| {
let mut a_e = a.clone();
a_e.extend_from_slice(right_encode(&mut [0u8; 9], a.len() as u64 * 8));
let mut b_e = b.clone();
b_e.extend_from_slice(right_encode(&mut [0u8; 9], b.len() as u64 * 8));
if a == b {
assert_eq!(a_e, b_e, "equal labels must have equal encoded forms");
} else {
assert_ne!(a_e, b_e, "non-equal labels must have non-equal encoded forms");
}
});
}
#[test]
fn right_encode_test_vectors() {
let mut buf = [0; 9];
assert_eq!(right_encode(&mut buf, 0), [0, 1]);
assert_eq!(right_encode(&mut buf, 128), [128, 1]);
assert_eq!(right_encode(&mut buf, 65536), [1, 0, 0, 3]);
assert_eq!(right_encode(&mut buf, 4096), [16, 0, 2]);
assert_eq!(
right_encode(&mut buf, 18446744073709551615),
[255, 255, 255, 255, 255, 255, 255, 255, 8]
);
assert_eq!(right_encode(&mut buf, 12345), [48, 57, 2]);
}
}