#include "unary-ops.h"
static inline float op_abs(float x) {
return fabsf(x);
}
static inline float op_sgn(float x) {
return (x > 0.f) ? 1.f : ((x < 0.f) ? -1.f : 0.f);
}
static inline float op_neg(float x) {
return -x;
}
static inline float op_step(float x) {
return (x > 0.f) ? 1.f : 0.f;
}
static inline float op_tanh(float x) {
return tanhf(x);
}
static inline float op_elu(float x) {
return (x > 0.f) ? x : expm1f(x);
}
static inline float op_relu(float x) {
return (x > 0.f) ? x : 0.f;
}
static inline float op_sigmoid(float x) {
return 1.f / (1.f + expf(-x));
}
static inline float op_hardsigmoid(float x) {
return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
static inline float op_exp(float x) {
return expf(x);
}
static inline float op_hardswish(float x) {
return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
static inline float op_sqr(float x) {
return x * x;
}
static inline float op_sqrt(float x) {
return sqrtf(x);
}
static inline float op_sin(float x) {
return sinf(x);
}
static inline float op_cos(float x) {
return cosf(x);
}
static inline float op_log(float x) {
return logf(x);
}
template <float (*op)(float), typename src0_t, typename dst_t>
static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) {
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
for (int i = 0; i < n; i++) {
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
}
}
template <float (*op)(float), typename src0_t, typename dst_t>
static void apply_unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(dst_t));
GGML_ASSERT(nb00 == sizeof(src0_t));
const auto [ir0, ir1] = get_thread_range(params, src0);
for (int64_t ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
vec_unary_op<op>(ne0, dst_ptr, src0_ptr);
}
}
template <float (*op)(float)>
static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { apply_unary_op<op, float, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_abs>(params, dst);
}
void ggml_compute_forward_sgn(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_sgn>(params, dst);
}
void ggml_compute_forward_neg(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_neg>(params, dst);
}
void ggml_compute_forward_step(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_step>(params, dst);
}
void ggml_compute_forward_tanh(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_tanh>(params, dst);
}
void ggml_compute_forward_elu(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_elu>(params, dst);
}
void ggml_compute_forward_relu(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_relu>(params, dst);
}
void ggml_compute_forward_sigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_sigmoid>(params, dst);
}
void ggml_compute_forward_hardsigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_hardsigmoid>(params, dst);
}
void ggml_compute_forward_exp(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_exp>(params, dst);
}
void ggml_compute_forward_hardswish(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_hardswish>(params, dst);
}
void ggml_compute_forward_sqr(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_sqr>(params, dst);
}
void ggml_compute_forward_sqrt(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_sqrt>(params, dst);
}
void ggml_compute_forward_sin(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_sin>(params, dst);
}
void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_cos>(params, dst);
}
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_log>(params, dst);
}