llama-cpp-sys-2 0.1.7

Low Level Bindings to llama.cpp
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
#import "ggml-metal.h"

#import "ggml-backend-impl.h"
#import "ggml.h"

#import <Foundation/Foundation.h>

#import <Metal/Metal.h>

#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

#ifdef GGML_METAL_NDEBUG
#define GGML_METAL_LOG_INFO(...)
#define GGML_METAL_LOG_WARN(...)
#define GGML_METAL_LOG_ERROR(...)
#else
#define GGML_METAL_LOG_INFO(...)  ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_METAL_LOG_WARN(...)  ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#endif

#define UNUSED(x) (void)(x)

#define GGML_METAL_MAX_KERNELS 256

struct ggml_metal_buffer {
    const char * name;

    void   * data;
    size_t   size;

    id<MTLBuffer> metal;
};

struct ggml_metal_kernel {
    id<MTLFunction>             function;
    id<MTLComputePipelineState> pipeline;
};

enum ggml_metal_kernel_type {
    GGML_METAL_KERNEL_TYPE_ADD,
    GGML_METAL_KERNEL_TYPE_ADD_ROW,
    GGML_METAL_KERNEL_TYPE_MUL,
    GGML_METAL_KERNEL_TYPE_MUL_ROW,
    GGML_METAL_KERNEL_TYPE_DIV,
    GGML_METAL_KERNEL_TYPE_DIV_ROW,
    GGML_METAL_KERNEL_TYPE_SCALE,
    GGML_METAL_KERNEL_TYPE_SCALE_4,
    GGML_METAL_KERNEL_TYPE_TANH,
    GGML_METAL_KERNEL_TYPE_RELU,
    GGML_METAL_KERNEL_TYPE_GELU,
    GGML_METAL_KERNEL_TYPE_GELU_QUICK,
    GGML_METAL_KERNEL_TYPE_SILU,
    GGML_METAL_KERNEL_TYPE_SOFT_MAX,
    GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
    GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
    GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
    GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
    GGML_METAL_KERNEL_TYPE_RMS_NORM,
    GGML_METAL_KERNEL_TYPE_GROUP_NORM,
    GGML_METAL_KERNEL_TYPE_NORM,
    GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
    GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
    GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
  //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
  //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
  //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
    GGML_METAL_KERNEL_TYPE_ROPE_F32,
    GGML_METAL_KERNEL_TYPE_ROPE_F16,
    GGML_METAL_KERNEL_TYPE_ALIBI_F32,
    GGML_METAL_KERNEL_TYPE_IM2COL_F16,
    GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
    GGML_METAL_KERNEL_TYPE_PAD_F32,
    GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
    GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
    GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
    GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
    GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
    GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
    GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
    GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
  //GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
  //GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
    GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
    GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
    GGML_METAL_KERNEL_TYPE_CONCAT,
    GGML_METAL_KERNEL_TYPE_SQR,
    GGML_METAL_KERNEL_TYPE_SUM_ROWS,

    GGML_METAL_KERNEL_TYPE_COUNT
};

struct ggml_metal_context {
    int n_cb;

    id<MTLDevice>       device;
    id<MTLCommandQueue> queue;
    id<MTLLibrary>      library;

    id<MTLCommandBuffer>         command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
    id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];

    dispatch_queue_t d_queue;

    int n_buffers;
    struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];

    struct ggml_metal_kernel kernels[GGML_METAL_MAX_KERNELS];

    bool support_simdgroup_reduction;
    bool support_simdgroup_mm;
};

// MSL code
// TODO: move the contents here when ready
//       for now it is easier to work in a separate file
//static NSString * const msl_library_source = @"see metal.metal";

// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@end
@implementation GGMLMetalClass
@end

static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
    fprintf(stderr, "%s", msg);

    UNUSED(level);
    UNUSED(user_data);
}

ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
void * ggml_metal_log_user_data = NULL;

GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
    if (ggml_metal_log_callback != NULL) {
        va_list args;
        va_start(args, format);
        char buffer[128];
        int len = vsnprintf(buffer, 128, format, args);
        if (len < 128) {
            ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
        } else {
            char* buffer2 = malloc(len+1);
            va_end(args);
            va_start(args, format);
            vsnprintf(buffer2, len+1, format, args);
            buffer2[len] = 0;
            ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
            free(buffer2);
        }
        va_end(args);
    }
}

static void * ggml_metal_host_malloc(size_t n) {
    void * data = NULL;
    const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
    if (result != 0) {
        GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
        return NULL;
    }

    return data;
}

static struct ggml_metal_context * ggml_metal_init(int n_cb) {
    GGML_METAL_LOG_INFO("%s: allocating\n", __func__);

    id<MTLDevice> device;
    NSString * s;

#if TARGET_OS_OSX
    // Show all the Metal device instances in the system
    NSArray * devices = MTLCopyAllDevices();
    for (device in devices) {
        s = [device name];
        GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
    }
#endif

    // Pick and show default Metal device
    device = MTLCreateSystemDefaultDevice();
    s = [device name];
    GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);

    // Configure context
    struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
    ctx->device = device;
    ctx->n_cb   = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
    ctx->queue  = [ctx->device newCommandQueue];
    ctx->n_buffers = 0;

    ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);

    // load library
    {
        NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
        bundle = SWIFTPM_MODULE_BUNDLE;
#else
        bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
        NSError * error = nil;
        NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
        if (libPath != nil) {
            // pre-compiled library found
            NSURL * libURL = [NSURL fileURLWithPath:libPath];
            GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
            ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
        } else {
            GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);

            NSString * sourcePath;
            NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];

            GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");

            if (ggmlMetalPathResources) {
                sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
            } else {
                sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
            }
            if (sourcePath == nil) {
                GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
                sourcePath = @"ggml-metal.metal";
            }
            GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
            NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
            if (error) {
                GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
                return NULL;
            }

            // dictionary of preprocessor macros
            NSMutableDictionary * prep = [NSMutableDictionary dictionary];

#ifdef GGML_QKK_64
            prep[@"QK_K"] = @(64);
#endif

            MTLCompileOptions* options = [MTLCompileOptions new];
            options.preprocessorMacros = prep;

            //[options setFastMathEnabled:false];

            ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];

            [options release];
            [prep release];
        }

        if (error) {
            GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
            return NULL;
        }
    }

#if TARGET_OS_OSX
    // print MTL GPU family:
    GGML_METAL_LOG_INFO("%s: GPU name:   %s\n", __func__, [[ctx->device name] UTF8String]);

    const NSInteger MTLGPUFamilyMetal3 = 5001;

    // determine max supported GPU family
    // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
    // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
    {
        for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
            if ([ctx->device supportsFamily:i]) {
                GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d  (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
                break;
            }
        }

        for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
            if ([ctx->device supportsFamily:i]) {
                GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
                break;
            }
        }

        for (int i = MTLGPUFamilyMetal3 + 5; i >= MTLGPUFamilyMetal3; --i) {
            if ([ctx->device supportsFamily:i]) {
                GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d  (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3 + 3, i);
                break;
            }
        }
    }

    ctx->support_simdgroup_reduction  = [ctx->device supportsFamily:MTLGPUFamilyApple7];
    ctx->support_simdgroup_reduction |= [ctx->device supportsFamily:MTLGPUFamilyMetal3];

    ctx->support_simdgroup_mm = [ctx->device supportsFamily:MTLGPUFamilyApple7];

    GGML_METAL_LOG_INFO("%s: simdgroup reduction support   = %s\n",       __func__, ctx->support_simdgroup_reduction ? "true" : "false");
    GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n",       __func__, ctx->support_simdgroup_mm ? "true" : "false");
    GGML_METAL_LOG_INFO("%s: hasUnifiedMemory              = %s\n",       __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
    GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize  = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
    if (ctx->device.maxTransferRate != 0) {
        GGML_METAL_LOG_INFO("%s: maxTransferRate               = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
    } else {
        GGML_METAL_LOG_INFO("%s: maxTransferRate               = built-in GPU\n", __func__);
    }
#endif

    // load kernels
    {
        NSError * error = nil;

        for (int i = 0; i < GGML_METAL_MAX_KERNELS; ++i) {
            ctx->kernels[i].function = nil;
            ctx->kernels[i].pipeline = nil;
        }

        /*
            GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
                    (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
                    (int) kernel->pipeline.threadExecutionWidth); \
        */
#define GGML_METAL_ADD_KERNEL(e, name, supported) \
        if (supported) { \
            struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
            kernel->function = [ctx->library newFunctionWithName:@"kernel_"#name]; \
            kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:kernel->function error:&error]; \
            if (error) { \
                GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
                return NULL; \
            } \
        } else { \
            GGML_METAL_LOG_WARN("%s: skipping %-32s (not supported)\n", __func__, "kernel_"#name); \
        }

        // simd_sum and simd_max requires MTLGPUFamilyApple7

        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD,                       add,                    true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW,                   add_row,                true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL,                       mul,                    true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW,                   mul_row,                true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV,                       div,                    true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW,                   div_row,                true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE,                     scale,                  true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4,                   scale_4,                true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH,                      tanh,                   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU,                      relu,                   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU,                      gelu,                   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK,                gelu_quick,             true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU,                      silu,                   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX,                  soft_max,               ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,                soft_max_4,             ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,             diag_mask_inf,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,           diag_mask_inf_8,        true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,              get_rows_f32,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,              get_rows_f16,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,             get_rows_q4_0,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,             get_rows_q4_1,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,             get_rows_q5_0,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,             get_rows_q5_1,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,             get_rows_q8_0,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,             get_rows_q2_K,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,             get_rows_q3_K,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,             get_rows_q4_K,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,             get_rows_q5_K,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,             get_rows_q6_K,          true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,          get_rows_iq2_xxs,       true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,           get_rows_iq2_xs,        true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,              get_rows_i32,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM,                  rms_norm,               ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM,                group_norm,             ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM,                      norm,                   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,            mul_mv_f32_f32,         ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,            mul_mv_f16_f16,         ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,            mul_mv_f16_f32,         ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,       mul_mv_f16_f32_1row,    ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,         mul_mv_f16_f32_l4,      ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,           mul_mv_q4_0_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,           mul_mv_q4_1_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,           mul_mv_q5_0_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,           mul_mv_q5_1_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,           mul_mv_q8_0_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,           mul_mv_q2_K_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,           mul_mv_q3_K_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,           mul_mv_q4_K_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,           mul_mv_q5_K_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,           mul_mv_q6_K_f32,        ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,        mul_mv_iq2_xxs_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,         mul_mv_iq2_xs_f32,      ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,         mul_mv_id_f32_f32,      ctx->support_simdgroup_reduction);
      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,         mul_mv_id_f16_f16,      ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,         mul_mv_id_f16_f32,      ctx->support_simdgroup_reduction);
      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,    mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction);
      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,      mul_mv_id_f16_f32_l4,   ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,        mul_mv_id_q4_0_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,        mul_mv_id_q4_1_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,        mul_mv_id_q5_0_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,        mul_mv_id_q5_1_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,        mul_mv_id_q8_0_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,        mul_mv_id_q2_K_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,        mul_mv_id_q3_K_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,        mul_mv_id_q4_K_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,        mul_mv_id_q5_K_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,        mul_mv_id_q6_K_f32,     ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,     mul_mv_id_iq2_xxs_f32,  ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,      mul_mv_id_iq2_xs_f32,   ctx->support_simdgroup_reduction);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,            mul_mm_f32_f32,         ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,            mul_mm_f16_f32,         ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,           mul_mm_q4_0_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,           mul_mm_q4_1_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,           mul_mm_q5_0_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,           mul_mm_q5_1_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,           mul_mm_q8_0_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,           mul_mm_q2_K_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,           mul_mm_q3_K_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,           mul_mm_q4_K_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,           mul_mm_q5_K_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,           mul_mm_q6_K_f32,        ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,        mul_mm_iq2_xxs_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,         mul_mm_iq2_xs_f32,      ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,         mul_mm_id_f32_f32,      ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,         mul_mm_id_f16_f32,      ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,        mul_mm_id_q4_0_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,        mul_mm_id_q4_1_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,        mul_mm_id_q5_0_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,        mul_mm_id_q5_1_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,        mul_mm_id_q8_0_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,        mul_mm_id_q2_K_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,        mul_mm_id_q3_K_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,        mul_mm_id_q4_K_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,        mul_mm_id_q5_K_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,        mul_mm_id_q6_K_f32,     ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,     mul_mm_id_iq2_xxs_f32,  ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,      mul_mm_id_iq2_xs_f32,   ctx->support_simdgroup_mm);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32,                  rope_f32,               true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16,                  rope_f16,               true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32,                 alibi_f32,              true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16,                im2col_f16,             true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32,               upscale_f32,            true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32,                   pad_f32,                true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,       argsort_f32_i32_asc,    true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,      argsort_f32_i32_desc,   true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,            leaky_relu_f32,         true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16,               cpy_f32_f16,            true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32,               cpy_f32_f32,            true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,              cpy_f32_q8_0,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,              cpy_f32_q4_0,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,              cpy_f32_q4_1,           true);
      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,              cpy_f32_q5_0,           true);
      //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,              cpy_f32_q5_1,           true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16,               cpy_f16_f16,            true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32,               cpy_f16_f32,            true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT,                    concat,                 true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR,                       sqr,                    true);
        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS,                  sum_rows,               true);
    }

    return ctx;
}

static void ggml_metal_free(struct ggml_metal_context * ctx) {
    GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);

    for (int i = 0; i < ctx->n_buffers; ++i) {
        [ctx->buffers[i].metal release];
    }

    for (int i = 0; i < GGML_METAL_MAX_KERNELS; ++i) {
        if (ctx->kernels[i].pipeline) {
            [ctx->kernels[i].pipeline release];
        }

        if (ctx->kernels[i].function) {
            [ctx->kernels[i].function release];
        }
    }

    [ctx->library release];
    [ctx->queue release];
    [ctx->device release];

    dispatch_release(ctx->d_queue);

    free(ctx);
}

// temporarily defined here for compatibility between ggml-backend and the old API

struct ggml_backend_metal_buffer {
    void   * data;
    size_t   size;

    id<MTLBuffer> metal;
};

struct ggml_backend_metal_buffer_context {
    void * all_data;
    size_t all_size;
    bool owned;

    // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
    int n_buffers;
    struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
};

// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
//
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
    //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);

    const int64_t tsize = ggml_nbytes(t);

    ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;

    // compatibility with ggml-backend
    if (buffer && buffer->buft == ggml_backend_metal_buffer_type()) {
        struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;

        // find the view that contains the tensor fully
        for (int i = 0; i < buf_ctx->n_buffers; ++i) {
            const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;

            //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
            if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
                *offs = (size_t) ioffs;

                //GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);

                return buf_ctx->buffers[i].metal;
            }
        }

        GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);

        return nil;
    }

    // find the view that contains the tensor fully
    for (int i = 0; i < ctx->n_buffers; ++i) {
        const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;

        //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
        if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
            *offs = (size_t) ioffs;

            //GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);

            return ctx->buffers[i].metal;
        }
    }

    GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);

    return nil;
}

static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
    switch (op->op) {
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(op)) {
                case GGML_UNARY_OP_TANH:
                case GGML_UNARY_OP_RELU:
                case GGML_UNARY_OP_GELU:
                case GGML_UNARY_OP_GELU_QUICK:
                case GGML_UNARY_OP_SILU:
                    return true;
                default:
                    return false;
            }
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_TRANSPOSE:
        case GGML_OP_PERMUTE:
        case GGML_OP_CONCAT:
        case GGML_OP_ADD:
        case GGML_OP_ACC:
        case GGML_OP_MUL:
        case GGML_OP_DIV:
        case GGML_OP_SCALE:
        case GGML_OP_SQR:
        case GGML_OP_SUM_ROWS:
            return true;
        case GGML_OP_SOFT_MAX:
        case GGML_OP_RMS_NORM:
        case GGML_OP_GROUP_NORM:
            return ctx->support_simdgroup_reduction;
        case GGML_OP_NORM:
        case GGML_OP_ALIBI:
        case GGML_OP_ROPE:
        case GGML_OP_IM2COL:
        case GGML_OP_UPSCALE:
        case GGML_OP_PAD:
        case GGML_OP_ARGSORT:
        case GGML_OP_LEAKY_RELU:
            return true;
        case GGML_OP_MUL_MAT:
        case GGML_OP_MUL_MAT_ID:
            return ctx->support_simdgroup_reduction;
        case GGML_OP_CPY:
        case GGML_OP_DUP:
        case GGML_OP_CONT:
            {
                switch (op->src[0]->type) {
                    case GGML_TYPE_F32:
                        switch (op->type) {
                           case GGML_TYPE_F16:
                           case GGML_TYPE_F32:
                           case GGML_TYPE_Q8_0:
                           case GGML_TYPE_Q4_0:
                           case GGML_TYPE_Q4_1:
                                return true;
                           default:
                                return false;
                        }
                    case GGML_TYPE_F16:
                        switch (op->type) {
                           case GGML_TYPE_F16:
                           case GGML_TYPE_F32:
                                return true;
                           default:
                                return false;
                        }
                    default:
                        return false;
                };
            }
        case GGML_OP_DIAG_MASK_INF:
        case GGML_OP_GET_ROWS:
            {
                return op->ne[3] == 1;
            }
        default:
            return false;
    }
}

static bool ggml_metal_graph_compute(
        struct ggml_metal_context * ctx,
               struct ggml_cgraph * gf) {
    @autoreleasepool {

    MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;

    const int n_nodes  = gf->n_nodes;
    edesc.dispatchType = MTLDispatchTypeSerial;

    // create multiple command buffers and enqueue them
    // then, we encode the graph into the command buffers in parallel

    const int n_cb = ctx->n_cb;

    for (int i = 0; i < n_cb; ++i) {
        ctx->command_buffers[i] = [ctx->queue commandBuffer];

        // enqueue the command buffers in order to specify their execution order
        [ctx->command_buffers[i] enqueue];

        ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
    }

    for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
        const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;

        dispatch_async(ctx->d_queue, ^{
            size_t offs_src0 = 0;
            size_t offs_src1 = 0;
            size_t offs_dst  = 0;

            id<MTLCommandBuffer> command_buffer  = ctx->command_buffers[cb_idx];
            id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];

            const int node_start =                                      (cb_idx + 0) * n_nodes_per_cb;
            const int node_end   = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);

            for (int ind = node_start; ind < node_end; ++ind) {
                const int i = ind;

                if (i == -1) {
                    [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
                    continue;
                }

                //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));

                struct ggml_tensor * src0 = gf->nodes[i]->src[0];
                struct ggml_tensor * src1 = gf->nodes[i]->src[1];
                struct ggml_tensor * dst  = gf->nodes[i];

                switch (dst->op) {
                    case GGML_OP_NONE:
                    case GGML_OP_RESHAPE:
                    case GGML_OP_VIEW:
                    case GGML_OP_TRANSPOSE:
                    case GGML_OP_PERMUTE:
                        {
                            // noop -> next node
                        } continue;
                    default:
                        {
                        } break;
                }

                if (!ggml_metal_supports_op(ctx, dst)) {
                    GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
                    GGML_ASSERT(!"unsupported op");
                }

#ifndef GGML_METAL_NDEBUG
                [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
#endif

                const int64_t  ne00 = src0 ? src0->ne[0] : 0;
                const int64_t  ne01 = src0 ? src0->ne[1] : 0;
                const int64_t  ne02 = src0 ? src0->ne[2] : 0;
                const int64_t  ne03 = src0 ? src0->ne[3] : 0;

                const uint64_t nb00 = src0 ? src0->nb[0] : 0;
                const uint64_t nb01 = src0 ? src0->nb[1] : 0;
                const uint64_t nb02 = src0 ? src0->nb[2] : 0;
                const uint64_t nb03 = src0 ? src0->nb[3] : 0;

                const int64_t  ne10 = src1 ? src1->ne[0] : 0;
                const int64_t  ne11 = src1 ? src1->ne[1] : 0;
                const int64_t  ne12 = src1 ? src1->ne[2] : 0;
                const int64_t  ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);

                const uint64_t nb10 = src1 ? src1->nb[0] : 0;
                const uint64_t nb11 = src1 ? src1->nb[1] : 0;
                const uint64_t nb12 = src1 ? src1->nb[2] : 0;
                const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);

                const int64_t  ne0  = dst ? dst->ne[0] : 0;
                const int64_t  ne1  = dst ? dst->ne[1] : 0;
                const int64_t  ne2  = dst ? dst->ne[2] : 0;
                const int64_t  ne3  = dst ? dst->ne[3] : 0;

                const uint64_t nb0  = dst ? dst->nb[0] : 0;
                const uint64_t nb1  = dst ? dst->nb[1] : 0;
                const uint64_t nb2  = dst ? dst->nb[2] : 0;
                const uint64_t nb3  = dst ? dst->nb[3] : 0;

                const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
                const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
                const enum ggml_type dstt  = dst  ? dst->type  : GGML_TYPE_COUNT;

                id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
                id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
                id<MTLBuffer> id_dst  = dst  ? ggml_metal_get_buffer(ctx, dst,  &offs_dst)  : nil;

                //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
                //if (src0) {
                //    GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
                //            ggml_is_contiguous(src0), src0->name);
                //}
                //if (src1) {
                //    GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
                //            ggml_is_contiguous(src1), src1->name);
                //}
                //if (dst) {
                //    GGML_METAL_LOG_INFO("%s: dst  - %4s [%5lld, %5lld, %5lld], 1, %s\n",  __func__, ggml_type_name(dstt),  ne0,  ne1,  ne2,
                //            dst->name);
                //}

                switch (dst->op) {
                    case GGML_OP_CONCAT:
                        {
                            const int64_t nb = ne00;

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
                            [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
                            [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
                            [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
                            [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
                            [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
                            [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
                            [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
                            [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
                            [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
                            [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
                            [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
                            [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:24];
                            [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:25];
                            [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:26];
                            [encoder setBytes:&nb   length:sizeof(nb)   atIndex:27];

                            const int nth = MIN(1024, ne0);

                            [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_ADD:
                    case GGML_OP_MUL:
                    case GGML_OP_DIV:
                        {
                            const size_t offs = 0;

                            bool bcast_row = false;

                            int64_t nb = ne00;

                            id<MTLComputePipelineState> pipeline = nil;

                            if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
                                GGML_ASSERT(ggml_is_contiguous(src0));

                                // src1 is a row
                                GGML_ASSERT(ne11 == 1);

                                nb = ne00 / 4;
                                switch (dst->op) {
                                    case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
                                    case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
                                    case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
                                    default: GGML_ASSERT(false);
                                }

                                bcast_row = true;
                            } else {
                                switch (dst->op) {
                                    case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
                                    case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
                                    case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
                                    default: GGML_ASSERT(false);
                                }
                            }

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
                            [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
                            [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
                            [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
                            [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
                            [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
                            [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
                            [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
                            [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
                            [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
                            [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
                            [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
                            [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:24];
                            [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:25];
                            [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:26];
                            [encoder setBytes:&offs length:sizeof(offs) atIndex:27];
                            [encoder setBytes:&nb   length:sizeof(nb)   atIndex:28];

                            if (bcast_row) {
                                const int64_t n = ggml_nelements(dst)/4;

                                [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                            } else {
                                const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);

                                [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                            }
                        } break;
                    case GGML_OP_ACC:
                        {
                            GGML_ASSERT(src0t == GGML_TYPE_F32);
                            GGML_ASSERT(src1t == GGML_TYPE_F32);
                            GGML_ASSERT(dstt  == GGML_TYPE_F32);

                            GGML_ASSERT(ggml_is_contiguous(src0));
                            GGML_ASSERT(ggml_is_contiguous(src1));

                            const size_t pnb1 = ((int32_t *) dst->op_params)[0];
                            const size_t pnb2 = ((int32_t *) dst->op_params)[1];
                            const size_t pnb3 = ((int32_t *) dst->op_params)[2];
                            const size_t offs = ((int32_t *) dst->op_params)[3];

                            const bool inplace = (bool) ((int32_t *) dst->op_params)[4];

                            if (!inplace) {
                                // run a separete kernel to cpy src->dst
                                // not sure how to avoid this
                                // TODO: make a simpler cpy_bytes kernel

                                const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;

                                [encoder setComputePipelineState:pipeline];
                                [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
                                [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                                [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
                                [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
                                [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
                                [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
                                [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
                                [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
                                [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
                                [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
                                [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
                                [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
                                [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
                                [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
                                [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
                                [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
                                [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
                                [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];

                                const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);

                                [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                            }

                            const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
                            [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
                            [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
                            [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
                            [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
                            [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
                            [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
                            [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
                            [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
                            [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
                            [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
                            [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
                            [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
                            [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
                            [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
                            [encoder setBytes:&offs length:sizeof(offs) atIndex:27];

                            const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);

                            [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_SCALE:
                        {
                            GGML_ASSERT(ggml_is_contiguous(src0));

                            const float scale = *(const float *) dst->op_params;

                            int64_t n = ggml_nelements(dst);

                            id<MTLComputePipelineState> pipeline = nil;

                            if (n % 4 == 0) {
                                n /= 4;
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
                            } else {
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
                            }

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0   offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst    offset:offs_dst  atIndex:1];
                            [encoder setBytes:&scale length:sizeof(scale) atIndex:2];

                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                        } break;
                    case GGML_OP_UNARY:
                        switch (ggml_get_unary_op(gf->nodes[i])) {
                            case GGML_UNARY_OP_TANH:
                                {
                                    id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;

                                    [encoder setComputePipelineState:pipeline];
                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];

                                    const int64_t n = ggml_nelements(dst);

                                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                                } break;
                            case GGML_UNARY_OP_RELU:
                                {
                                    id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;

                                    [encoder setComputePipelineState:pipeline];
                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];

                                    const int64_t n = ggml_nelements(dst);

                                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                                } break;
                            case GGML_UNARY_OP_GELU:
                                {
                                    id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;

                                    [encoder setComputePipelineState:pipeline];
                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];

                                    const int64_t n = ggml_nelements(dst);
                                    GGML_ASSERT(n % 4 == 0);

                                    [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                                } break;
                            case GGML_UNARY_OP_GELU_QUICK:
                                {
                                    id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;

                                    [encoder setComputePipelineState:pipeline];
                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];

                                    const int64_t n = ggml_nelements(dst);
                                    GGML_ASSERT(n % 4 == 0);

                                    [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                                } break;
                            case GGML_UNARY_OP_SILU:
                                {
                                    id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;

                                    [encoder setComputePipelineState:pipeline];
                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];

                                    const int64_t n = ggml_nelements(dst);
                                    GGML_ASSERT(n % 4 == 0);

                                    [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                                } break;
                            default:
                                {
                                    GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
                                    GGML_ASSERT(false);
                                }
                        } break;
                    case GGML_OP_SQR:
                        {
                            GGML_ASSERT(ggml_is_contiguous(src0));

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst atIndex:1];

                            const int64_t n = ggml_nelements(dst);

                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                        } break;
                    case GGML_OP_SUM_ROWS:
                        {
                            GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
                            [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
                            [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
                            [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
                            [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
                            [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
                            [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
                            [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
                            [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
                            [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
                            [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
                            [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:18];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:19];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:20];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:21];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:22];
                            [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:23];
                            [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:24];
                            [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:25];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                        } break;
                    case GGML_OP_SOFT_MAX:
                        {
                            int nth = 32; // SIMD width

                            id<MTLComputePipelineState> pipeline = nil;

                            if (ne00%4 == 0) {
                                while (nth < ne00/4 && nth < 256) {
                                    nth *= 2;
                                }
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline;
                            } else {
                                while (nth < ne00 && nth < 1024) {
                                    nth *= 2;
                                }
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
                            }

                            const float scale = ((float *) dst->op_params)[0];

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0   atIndex:0];
                            if (id_src1) {
                                [encoder setBuffer:id_src1 offset:offs_src1   atIndex:1];
                            } else {
                                [encoder setBuffer:id_src0 offset:offs_src0   atIndex:1];
                            }
                            [encoder setBuffer:id_dst  offset:offs_dst    atIndex:2];
                            [encoder setBytes:&ne00  length:sizeof(ne00)  atIndex:3];
                            [encoder setBytes:&ne01  length:sizeof(ne01)  atIndex:4];
                            [encoder setBytes:&ne02  length:sizeof(ne02)  atIndex:5];
                            [encoder setBytes:&scale length:sizeof(scale) atIndex:6];
                            [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_DIAG_MASK_INF:
                        {
                            const int n_past = ((int32_t *)(dst->op_params))[0];

                            id<MTLComputePipelineState> pipeline = nil;

                            if (ne00%8 == 0) {
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
                            } else {
                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
                            }

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
                            [encoder setBytes:&ne00   length:sizeof(ne00) atIndex:2];
                            [encoder setBytes:&ne01   length:sizeof(ne01) atIndex:3];
                            [encoder setBytes:&n_past length:sizeof(int)  atIndex:4];

                            if (ne00%8 == 0) {
                                [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                            }
                            else {
                                [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                            }
                        } break;
                    case GGML_OP_MUL_MAT:
                        {
                            GGML_ASSERT(ne00 == ne10);

                            // TODO: assert that dim2 and dim3 are contiguous
                            GGML_ASSERT(ne12 % ne02 == 0);
                            GGML_ASSERT(ne13 % ne03 == 0);

                            const uint r2 = ne12/ne02;
                            const uint r3 = ne13/ne03;

                            // find the break-even point where the matrix-matrix kernel becomes more efficient compared
                            // to the matrix-vector kernel
                            int ne11_mm_min = 1;

#if 0
                            // the numbers below are measured on M2 Ultra for 7B and 13B models
                            // these numbers do not translate to other devices or model sizes
                            // TODO: need to find a better approach
                            if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
                                switch (src0t) {
                                    case GGML_TYPE_F16:  ne11_mm_min = 2;  break;
                                    case GGML_TYPE_Q8_0: ne11_mm_min = 7;  break;
                                    case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
                                    case GGML_TYPE_Q3_K: ne11_mm_min = 7;  break;
                                    case GGML_TYPE_Q4_0:
                                    case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
                                    case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
                                    case GGML_TYPE_Q5_0:                          // not tested yet
                                    case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
                                    case GGML_TYPE_Q5_K: ne11_mm_min = 7;  break;
                                    case GGML_TYPE_Q6_K: ne11_mm_min = 7;  break;
                                    default:             ne11_mm_min = 1;  break;
                                }
                            }
#endif

                            // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
                            // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
                            if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
                                !ggml_is_transposed(src0) &&
                                !ggml_is_transposed(src1) &&
                                src1t == GGML_TYPE_F32 &&
                                ne00 % 32 == 0 && ne00 >= 64 &&
                                (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
                                //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);

                                id<MTLComputePipelineState> pipeline = nil;

                                switch (src0->type) {
                                    case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32    ].pipeline; break;
                                    case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32    ].pipeline; break;
                                    case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32   ].pipeline; break;
                                    case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32   ].pipeline; break;
                                    case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
                                    case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
                                    default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
                                }

                                [encoder setComputePipelineState:pipeline];
                                [encoder setBuffer:id_src0 offset:offs_src0    atIndex:0];
                                [encoder setBuffer:id_src1 offset:offs_src1    atIndex:1];
                                [encoder setBuffer:id_dst  offset:offs_dst     atIndex:2];
                                [encoder setBytes:&ne00    length:sizeof(ne00) atIndex:3];
                                [encoder setBytes:&ne02    length:sizeof(ne02) atIndex:4];
                                [encoder setBytes:&nb01    length:sizeof(nb01) atIndex:5];
                                [encoder setBytes:&nb02    length:sizeof(nb02) atIndex:6];
                                [encoder setBytes:&ne12    length:sizeof(ne12) atIndex:7];
                                [encoder setBytes:&nb10    length:sizeof(nb10) atIndex:8];
                                [encoder setBytes:&nb11    length:sizeof(nb11) atIndex:9];
                                [encoder setBytes:&nb12    length:sizeof(nb12) atIndex:10];
                                [encoder setBytes:&ne0     length:sizeof(ne0)  atIndex:11];
                                [encoder setBytes:&ne1     length:sizeof(ne1)  atIndex:12];
                                [encoder setBytes:&r2      length:sizeof(r2)   atIndex:13];
                                [encoder setBytes:&r3      length:sizeof(r3)   atIndex:14];
                                [encoder setThreadgroupMemoryLength:8192 atIndex:0];
                                [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
                            } else {
                                int nth0 = 32;
                                int nth1 = 1;
                                int nrows = 1;
                                //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);

                                id<MTLComputePipelineState> pipeline = nil;

                                // use custom matrix x vector kernel
                                switch (src0t) {
                                    case GGML_TYPE_F32:
                                        {
                                            GGML_ASSERT(src1t == GGML_TYPE_F32);
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
                                            nrows = 4;
                                        } break;
                                    case GGML_TYPE_F16:
                                        {
                                            nth0 = 32;
                                            nth1 = 1;
                                            if (src1t == GGML_TYPE_F32) {
                                                if (ne11 * ne12 < 4) {
                                                    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
                                                } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
                                                    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
                                                    nrows = ne11;
                                                } else {
                                                    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
                                                    nrows = 4;
                                                }
                                            } else {
                                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
                                                nrows = 4;
                                            }
                                        } break;
                                    case GGML_TYPE_Q4_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q4_1:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_1:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q8_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q2_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q3_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q4_K:
                                        {
                                            nth0 = 4; //1;
                                            nth1 = 8; //32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q6_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_IQ2_XXS:
                                        {
                                            nth0 = 4;
                                            nth1 = 16;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_IQ2_XS:
                                        {
                                            nth0 = 4;
                                            nth1 = 16;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
                                        } break;
                                    default:
                                        {
                                            GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
                                            GGML_ASSERT(false && "not implemented");
                                        }
                                };

                                if (ggml_is_quantized(src0t)) {
                                    GGML_ASSERT(ne00 >= nth0*nth1);
                                }

                                [encoder setComputePipelineState:pipeline];
                                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
                                [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
                                [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
                                [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
                                [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
                                [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
                                [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
                                [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
                                [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
                                [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
                                [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
                                [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
                                [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
                                [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:15];
                                [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:16];
                                [encoder setBytes:&r2   length:sizeof(r2)   atIndex:17];
                                [encoder setBytes:&r3   length:sizeof(r3)   atIndex:18];

                                if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
                                    src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
                                    src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
                                    const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
                                    [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src0t == GGML_TYPE_Q4_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
                                }
                                else if (src0t == GGML_TYPE_Q5_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src0t == GGML_TYPE_Q6_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                } else {
                                    const int64_t ny = (ne11 + nrows - 1)/nrows;
                                    [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                            }
                        } break;
                    case GGML_OP_MUL_MAT_ID:
                        {
                            //GGML_ASSERT(ne00 == ne10);
                            //GGML_ASSERT(ne03 == ne13);

                            GGML_ASSERT(src0t == GGML_TYPE_I32);

                            const int n_as = ((int32_t *) dst->op_params)[1];

                            // TODO: make this more general
                            GGML_ASSERT(n_as <= 8);

                            // max size of the src1ids array in the kernel stack
                            GGML_ASSERT(ne11 <= 512);

                            struct ggml_tensor * src2 = gf->nodes[i]->src[2];

                            const int64_t  ne20 = src2 ? src2->ne[0] : 0;
                            const int64_t  ne21 = src2 ? src2->ne[1] : 0;
                            const int64_t  ne22 = src2 ? src2->ne[2] : 0;
                            const int64_t  ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);

                            const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
                            const uint64_t nb21 = src2 ? src2->nb[1] : 0;
                            const uint64_t nb22 = src2 ? src2->nb[2] : 0;
                            const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);

                            const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);

                            GGML_ASSERT(!ggml_is_transposed(src2));
                            GGML_ASSERT(!ggml_is_transposed(src1));

                            GGML_ASSERT(src1t == GGML_TYPE_F32);

                            const uint r2 = ne12/ne22;
                            const uint r3 = ne13/ne23;

                            // find the break-even point where the matrix-matrix kernel becomes more efficient compared
                            // to the matrix-vector kernel
                            int ne11_mm_min = n_as;

                            const int idx = ((int32_t *) dst->op_params)[0];

                            // batch size
                            GGML_ASSERT(ne01 == ne11);

                            // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
                            // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
                            // !!!
                            // TODO: for now, always use mat-vec kernels until we figure out how to improve the
                            //       indirect matrix multiplication
                            // !!!
                            if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
                                ne20 % 32 == 0 && ne20 >= 64 &&
                                ne11 > ne11_mm_min) {

                                id<MTLComputePipelineState> pipeline = nil;

                                switch (src2->type) {
                                    case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32    ].pipeline; break;
                                    case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32    ].pipeline; break;
                                    case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32   ].pipeline; break;
                                    case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32   ].pipeline; break;
                                    case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32   ].pipeline; break;
                                    case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32   ].pipeline; break;
                                    case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
                                    case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
                                    default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
                                }

                                [encoder setComputePipelineState:pipeline];
                                [encoder setBuffer:id_src0 offset:offs_src0    atIndex:0];
                                [encoder setBuffer:id_src1 offset:offs_src1    atIndex:1];
                                [encoder setBuffer:id_dst  offset:offs_dst     atIndex:2];
                                [encoder setBytes:&nb01    length:sizeof(nb01) atIndex:3];
                                [encoder setBytes:&ne20    length:sizeof(ne20) atIndex:4];
                                [encoder setBytes:&ne22    length:sizeof(ne22) atIndex:5];
                                [encoder setBytes:&nb21    length:sizeof(nb21) atIndex:6];
                                [encoder setBytes:&nb22    length:sizeof(nb22) atIndex:7];
                                [encoder setBytes:&ne12    length:sizeof(ne12) atIndex:8];
                                [encoder setBytes:&ne13    length:sizeof(ne13) atIndex:9];
                                [encoder setBytes:&nb10    length:sizeof(nb10) atIndex:10];
                                [encoder setBytes:&nb11    length:sizeof(nb11) atIndex:11];
                                [encoder setBytes:&nb12    length:sizeof(nb12) atIndex:12];
                                [encoder setBytes:&ne0     length:sizeof(ne0)  atIndex:13];
                                [encoder setBytes:&ne1     length:sizeof(ne1)  atIndex:14];
                                [encoder setBytes:&nb1     length:sizeof(nb1)  atIndex:15];
                                [encoder setBytes:&r2      length:sizeof(r2)   atIndex:16];
                                [encoder setBytes:&r3      length:sizeof(r3)   atIndex:17];
                                [encoder setBytes:&idx     length:sizeof(idx)  atIndex:18];
                                // TODO: how to make this an array? read Metal docs
                                for (int j = 0; j < 8; ++j) {
                                    // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
                                    struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];

                                    size_t offs_src_cur = 0;
                                    id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);

                                    [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
                                }

                                [encoder setThreadgroupMemoryLength:8192 atIndex:0];

                                [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
                            } else {
                                int nth0 = 32;
                                int nth1 = 1;
                                int nrows = 1;
                                //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);

                                id<MTLComputePipelineState> pipeline = nil;

                                // use custom matrix x vector kernel
                                switch (src2t) {
                                    case GGML_TYPE_F32:
                                        {
                                            GGML_ASSERT(src1t == GGML_TYPE_F32);
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_F16:
                                        {
                                            GGML_ASSERT(src1t == GGML_TYPE_F32);
                                            nth0 = 32;
                                            nth1 = 1;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q4_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q4_1:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_1:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q8_0:
                                        {
                                            nth0 = 8;
                                            nth1 = 8;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q2_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q3_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q4_K:
                                        {
                                            nth0 = 4; //1;
                                            nth1 = 8; //32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q5_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_Q6_K:
                                        {
                                            nth0 = 2;
                                            nth1 = 32;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_IQ2_XXS:
                                        {
                                            nth0 = 4;
                                            nth1 = 16;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
                                        } break;
                                    case GGML_TYPE_IQ2_XS:
                                        {
                                            nth0 = 4;
                                            nth1 = 16;
                                            pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
                                        } break;
                                    default:
                                        {
                                            GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
                                            GGML_ASSERT(false && "not implemented");
                                        }
                                };

                                if (ggml_is_quantized(src2t)) {
                                    GGML_ASSERT(ne20 >= nth0*nth1);
                                }

                                const int64_t _ne1 = 1; // kernels needs a reference in constant memory

                                [encoder setComputePipelineState:pipeline];
                                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                                [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
                                [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
                                [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
                                [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
                                [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
                                [encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
                                [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
                                [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
                                [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
                                [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
                                [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
                                [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
                                [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
                                [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
                                [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
                                [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:17];
                                [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
                                [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:19];
                                [encoder setBytes:&r2   length:sizeof(r2)   atIndex:20];
                                [encoder setBytes:&r3   length:sizeof(r3)   atIndex:21];
                                [encoder setBytes:&idx  length:sizeof(idx)  atIndex:22];
                                // TODO: how to make this an array? read Metal docs
                                for (int j = 0; j < 8; ++j) {
                                    // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
                                    struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];

                                    size_t offs_src_cur = 0;
                                    id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);

                                    [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
                                }

                                if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
                                    src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
                                    src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
                                    const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
                                    [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src2t == GGML_TYPE_Q4_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src2t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
                                }
                                else if (src2t == GGML_TYPE_Q5_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                                else if (src2t == GGML_TYPE_Q6_K) {
                                    [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                } else {
                                    const int64_t ny = (_ne1 + nrows - 1)/nrows;
                                    [encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
                                }
                            }
                        } break;
                    case GGML_OP_GET_ROWS:
                        {
                            id<MTLComputePipelineState> pipeline = nil;

                            switch (src0->type) {
                                case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32    ].pipeline; break;
                                case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16    ].pipeline; break;
                                case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0   ].pipeline; break;
                                case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1   ].pipeline; break;
                                case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0   ].pipeline; break;
                                case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1   ].pipeline; break;
                                case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0   ].pipeline; break;
                                case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K   ].pipeline; break;
                                case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K   ].pipeline; break;
                                case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K   ].pipeline; break;
                                case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K   ].pipeline; break;
                                case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K   ].pipeline; break;
                                case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
                                case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
                                case GGML_TYPE_I32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32    ].pipeline; break;
                                default: GGML_ASSERT(false && "not implemented");
                            }

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0     offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_src1     offset:offs_src1 atIndex:1];
                            [encoder setBuffer:id_dst      offset:offs_dst  atIndex:2];
                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
                            [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
                            [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
                            [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
                            [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
                            [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:9];
                            [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:10];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
                        } break;
                    case GGML_OP_RMS_NORM:
                        {
                            GGML_ASSERT(ne00 % 4 == 0);

                            float eps;
                            memcpy(&eps, dst->op_params, sizeof(float));

                            int nth = 32; // SIMD width

                            while (nth < ne00/4 && nth < 1024) {
                                nth *= 2;
                            }

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
                            [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:3];
                            [encoder setBytes:&eps     length:sizeof(   float) atIndex:4];
                            [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];

                            const int64_t nrows = ggml_nrows(src0);

                            [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_GROUP_NORM:
                        {
                            GGML_ASSERT(ne00 % 4 == 0);

                            //float eps;
                            //memcpy(&eps, dst->op_params, sizeof(float));

                            const float eps = 1e-6f; // TODO: temporarily hardcoded

                            const int32_t n_groups = ((int32_t *) dst->op_params)[0];

                            int nth = 32; // SIMD width

                            //while (nth < ne00/4 && nth < 1024) {
                            //    nth *= 2;
                            //}

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0  offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_dst   offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ne00     length:sizeof( int64_t) atIndex:2];
                            [encoder setBytes:&ne01     length:sizeof( int64_t) atIndex:3];
                            [encoder setBytes:&ne02     length:sizeof( int64_t) atIndex:4];
                            [encoder setBytes:&nb00     length:sizeof(uint64_t) atIndex:5];
                            [encoder setBytes:&nb01     length:sizeof(uint64_t) atIndex:6];
                            [encoder setBytes:&nb02     length:sizeof(uint64_t) atIndex:7];
                            [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
                            [encoder setBytes:&eps      length:sizeof(   float) atIndex:9];
                            [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];

                            [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_NORM:
                        {
                            float eps;
                            memcpy(&eps, dst->op_params, sizeof(float));

                            const int nth = MIN(256, ne00);

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
                            [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:3];
                            [encoder setBytes:&eps     length:sizeof(   float) atIndex:4];
                            [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];

                            const int64_t nrows = ggml_nrows(src0);

                            [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_ALIBI:
                        {
                            GGML_ASSERT((src0t == GGML_TYPE_F32));

                            const int nth = MIN(1024, ne00);

                            //const int n_past = ((int32_t *) dst->op_params)[0];
                            const int n_head = ((int32_t *) dst->op_params)[1];
                            float max_bias;
                            memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));

                            const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
                            const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
                            const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
                            [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
                            [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
                            [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
                            [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
                            [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
                            [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
                            [encoder setBytes:&ne0  length:sizeof( int64_t) atIndex:10];
                            [encoder setBytes:&ne1  length:sizeof( int64_t) atIndex:11];
                            [encoder setBytes:&ne2  length:sizeof( int64_t) atIndex:12];
                            [encoder setBytes:&ne3  length:sizeof( int64_t) atIndex:13];
                            [encoder setBytes:&nb0  length:sizeof(uint64_t) atIndex:14];
                            [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:15];
                            [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:16];
                            [encoder setBytes:&nb3  length:sizeof(uint64_t) atIndex:17];
                            [encoder setBytes:&m0   length:sizeof(   float) atIndex:18];
                            [encoder setBytes:&m1   length:sizeof(   float) atIndex:19];
                            [encoder setBytes:&n_heads_log2_floor   length:sizeof(int) atIndex:20];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_ROPE:
                        {
                            GGML_ASSERT(ne10 == ne02);

                            const int nth = MIN(1024, ne00);

                            const int n_past     = ((int32_t *) dst->op_params)[0];
                            const int n_dims     = ((int32_t *) dst->op_params)[1];
                            const int mode       = ((int32_t *) dst->op_params)[2];
                            // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
                            const int n_orig_ctx = ((int32_t *) dst->op_params)[4];

                            float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
                            memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
                            memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
                            memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
                            memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
                            memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
                            memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));

                            id<MTLComputePipelineState> pipeline = nil;

                            switch (src0->type) {
                                case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break;
                                case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break;
                                default: GGML_ASSERT(false);
                            };

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0     offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_src1     offset:offs_src1        atIndex:1];
                            [encoder setBuffer:id_dst      offset:offs_dst         atIndex:2];
                            [encoder setBytes:&ne00        length:sizeof( int64_t) atIndex:3];
                            [encoder setBytes:&ne01        length:sizeof( int64_t) atIndex:4];
                            [encoder setBytes:&ne02        length:sizeof( int64_t) atIndex:5];
                            [encoder setBytes:&ne03        length:sizeof( int64_t) atIndex:6];
                            [encoder setBytes:&nb00        length:sizeof(uint64_t) atIndex:7];
                            [encoder setBytes:&nb01        length:sizeof(uint64_t) atIndex:8];
                            [encoder setBytes:&nb02        length:sizeof(uint64_t) atIndex:9];
                            [encoder setBytes:&nb03        length:sizeof(uint64_t) atIndex:10];
                            [encoder setBytes:&ne0         length:sizeof( int64_t) atIndex:11];
                            [encoder setBytes:&ne1         length:sizeof( int64_t) atIndex:12];
                            [encoder setBytes:&ne2         length:sizeof( int64_t) atIndex:13];
                            [encoder setBytes:&ne3         length:sizeof( int64_t) atIndex:14];
                            [encoder setBytes:&nb0         length:sizeof(uint64_t) atIndex:15];
                            [encoder setBytes:&nb1         length:sizeof(uint64_t) atIndex:16];
                            [encoder setBytes:&nb2         length:sizeof(uint64_t) atIndex:17];
                            [encoder setBytes:&nb3         length:sizeof(uint64_t) atIndex:18];
                            [encoder setBytes:&n_past      length:sizeof(     int) atIndex:19];
                            [encoder setBytes:&n_dims      length:sizeof(     int) atIndex:20];
                            [encoder setBytes:&mode        length:sizeof(     int) atIndex:21];
                            [encoder setBytes:&n_orig_ctx  length:sizeof(     int) atIndex:22];
                            [encoder setBytes:&freq_base   length:sizeof(   float) atIndex:23];
                            [encoder setBytes:&freq_scale  length:sizeof(   float) atIndex:24];
                            [encoder setBytes:&ext_factor  length:sizeof(   float) atIndex:25];
                            [encoder setBytes:&attn_factor length:sizeof(   float) atIndex:26];
                            [encoder setBytes:&beta_fast   length:sizeof(   float) atIndex:27];
                            [encoder setBytes:&beta_slow   length:sizeof(   float) atIndex:28];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_IM2COL:
                        {
                            GGML_ASSERT(src0->type == GGML_TYPE_F16);
                            GGML_ASSERT(src1->type == GGML_TYPE_F32);
                            GGML_ASSERT( dst->type == GGML_TYPE_F16);

                            const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
                            const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
                            const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
                            const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
                            const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
                            const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
                            const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;

                            const int32_t N  = src1->ne[is_2D ? 3 : 2];
                            const int32_t IC = src1->ne[is_2D ? 2 : 1];
                            const int32_t IH = is_2D ? src1->ne[1] : 1;
                            const int32_t IW =         src1->ne[0];

                            const int32_t KH = is_2D ? src0->ne[1] : 1;
                            const int32_t KW =         src0->ne[0];

                            const int32_t OH = is_2D ? dst->ne[2] : 1;
                            const int32_t OW =         dst->ne[1];

                            const int32_t CHW = IC * KH * KW;

                            const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
                            const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;

                            id<MTLComputePipelineState> pipeline = nil;

                            switch (src0->type) {
                                case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
                                case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
                                default: GGML_ASSERT(false);
                            };

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src1 offset:offs_src1        atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ofs0    length:sizeof( int32_t) atIndex:2];
                            [encoder setBytes:&ofs1    length:sizeof( int32_t) atIndex:3];
                            [encoder setBytes:&IW      length:sizeof( int32_t) atIndex:4];
                            [encoder setBytes:&IH      length:sizeof( int32_t) atIndex:5];
                            [encoder setBytes:&CHW     length:sizeof( int32_t) atIndex:6];
                            [encoder setBytes:&s0      length:sizeof( int32_t) atIndex:7];
                            [encoder setBytes:&s1      length:sizeof( int32_t) atIndex:8];
                            [encoder setBytes:&p0      length:sizeof( int32_t) atIndex:9];
                            [encoder setBytes:&p1      length:sizeof( int32_t) atIndex:10];
                            [encoder setBytes:&d0      length:sizeof( int32_t) atIndex:11];
                            [encoder setBytes:&d1      length:sizeof( int32_t) atIndex:12];

                            [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
                        } break;
                    case GGML_OP_UPSCALE:
                        {
                            GGML_ASSERT(src0->type == GGML_TYPE_F32);

                            const int sf = dst->op_params[0];

                            const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
                            [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
                            [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
                            [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
                            [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
                            [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
                            [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];
                            [encoder setBytes:&sf   length:sizeof(sf)   atIndex:18];

                            const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);

                            [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_PAD:
                        {
                            GGML_ASSERT(src0->type == GGML_TYPE_F32);

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
                            [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
                            [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
                            [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
                            [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
                            [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
                            [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
                            [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
                            [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
                            [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
                            [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
                            [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
                            [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
                            [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];

                            const int nth = MIN(1024, ne0);

                            [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    case GGML_OP_ARGSORT:
                        {
                            GGML_ASSERT(src0->type == GGML_TYPE_F32);
                            GGML_ASSERT( dst->type == GGML_TYPE_I32);

                            const int nrows = ggml_nrows(src0);

                            enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];

                            id<MTLComputePipelineState> pipeline = nil;

                            switch (order) {
                                case GGML_SORT_ASC:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline;  break;
                                case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
                                default: GGML_ASSERT(false);
                            };

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];

                            [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
                        } break;
                    case GGML_OP_LEAKY_RELU:
                        {
                            GGML_ASSERT(src0->type == GGML_TYPE_F32);

                            float slope;
                            memcpy(&slope, dst->op_params, sizeof(float));

                            id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0   atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst    atIndex:1];
                            [encoder setBytes:&slope length:sizeof(slope) atIndex:2];

                            const int64_t n = ggml_nelements(dst);

                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                        } break;
                    case GGML_OP_DUP:
                    case GGML_OP_CPY:
                    case GGML_OP_CONT:
                        {
                            GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);

                            int nth = MIN(1024, ne00/ggml_blck_size(src0->type));

                            id<MTLComputePipelineState> pipeline = nil;

                            switch (src0t) {
                                case GGML_TYPE_F32:
                                    {
                                        GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);

                                        switch (dstt) {
                                            case GGML_TYPE_F16:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline;  break;
                                            case GGML_TYPE_F32:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;  break;
                                            case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
                                            case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
                                            case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
                                          //case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
                                          //case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
                                            default: GGML_ASSERT(false && "not implemented");
                                        };
                                    } break;
                                case GGML_TYPE_F16:
                                    {
                                        switch (dstt) {
                                            case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
                                            case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
                                            default: GGML_ASSERT(false && "not implemented");
                                        };
                                    } break;
                                default: GGML_ASSERT(false && "not implemented");
                            }

                            [encoder setComputePipelineState:pipeline];
                            [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
                            [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
                            [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
                            [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
                            [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
                            [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
                            [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
                            [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
                            [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
                            [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
                            [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
                            [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
                            [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
                            [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
                            [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
                            [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
                            [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
                            [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];

                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
                        } break;
                    default:
                        {
                            GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
                            GGML_ASSERT(false);
                        }
                }

#ifndef GGML_METAL_NDEBUG
                [encoder popDebugGroup];
#endif
            }

            if (encoder != nil) {
                [encoder endEncoding];
                encoder = nil;
            }

            [command_buffer commit];
        });
    }

    // wait for all threads to finish
    dispatch_barrier_sync(ctx->d_queue, ^{});

    // check status of command buffers
    // needed to detect if the device ran out-of-memory for example (#1881)
    for (int i = 0; i < n_cb; i++) {
        [ctx->command_buffers[i] waitUntilCompleted];

        MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
        if (status != MTLCommandBufferStatusCompleted) {
            GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
            return false;
        }
    }

    return true;
    }
}

////////////////////////////////////////////////////////////////////////////////

// backend interface

// default buffer
static id<MTLDevice> g_backend_device = nil;
static int g_backend_device_ref_count = 0;

static id<MTLDevice> ggml_backend_metal_get_device(void) {
    if (g_backend_device == nil) {
        g_backend_device = MTLCreateSystemDefaultDevice();
    }

    g_backend_device_ref_count++;

    return g_backend_device;
}

static void ggml_backend_metal_free_device(void) {
    assert(g_backend_device_ref_count > 0);

    g_backend_device_ref_count--;

    if (g_backend_device_ref_count == 0) {
        [g_backend_device release];
        g_backend_device = nil;
    }
}

static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
    return "Metal";

    UNUSED(buffer);
}

static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;

    for (int i = 0; i < ctx->n_buffers; i++) {
        [ctx->buffers[i].metal release];
    }
    ggml_backend_metal_free_device();

    if (ctx->owned) {
        free(ctx->all_data);
    }

    free(ctx);
}

static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
    struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;

    return ctx->all_data;
}

static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    memcpy((char *)tensor->data + offset, data, size);

    UNUSED(buffer);
}

static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    memcpy(data, (const char *)tensor->data + offset, size);

    UNUSED(buffer);
}

static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
    if (ggml_backend_buffer_is_host(src->buffer)) {
        memcpy(dst->data, src->data, ggml_nbytes(src));
        return true;
    }
    return false;

    UNUSED(buffer);
}

static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;

    memset(ctx->all_data, value, ctx->all_size);
}

static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
    /* .get_name        = */ ggml_backend_metal_buffer_get_name,
    /* .free_buffer     = */ ggml_backend_metal_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_metal_buffer_get_base,
    /* .init_tensor     = */ NULL,
    /* .set_tensor      = */ ggml_backend_metal_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_metal_buffer_get_tensor,
    /* .cpy_tensor      = */ ggml_backend_metal_buffer_cpy_tensor,
    /* .clear           = */ ggml_backend_metal_buffer_clear,
    /* .reset           = */ NULL,
};

// default buffer type

static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    return "Metal";

    UNUSED(buft);
}

static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));

    const size_t size_page = sysconf(_SC_PAGESIZE);

    size_t size_aligned = size;
    if ((size_aligned % size_page) != 0) {
        size_aligned += (size_page - (size_aligned % size_page));
    }

    id<MTLDevice> device = ggml_backend_metal_get_device();

    ctx->all_data = ggml_metal_host_malloc(size_aligned);
    ctx->all_size = size_aligned;
    ctx->owned = true;
    ctx->n_buffers = 1;

    ctx->buffers[0].data = ctx->all_data;
    ctx->buffers[0].size = size;
    ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
                    length:size_aligned
                    options:MTLResourceStorageModeShared
                    deallocator:nil];

    if (ctx->buffers[0].metal == nil) {
        GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
        free(ctx);
        ggml_backend_metal_free_device();
        return NULL;
    }

    GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);


#if TARGET_OS_OSX
    GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
            device.currentAllocatedSize / 1024.0 / 1024.0,
            device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);

    if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
        GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
    } else {
        GGML_METAL_LOG_INFO("\n");
    }
#else
    GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif


    return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
}

static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
    return 32;
    UNUSED(buft);
}

static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
    return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);

    UNUSED(buft);
}

static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
    return true;

    UNUSED(buft);
}

ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
    static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
        /* .iface = */ {
            /* .get_name         = */ ggml_backend_metal_buffer_type_get_name,
            /* .alloc_buffer     = */ ggml_backend_metal_buffer_type_alloc_buffer,
            /* .get_alignment    = */ ggml_backend_metal_buffer_type_get_alignment,
            /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
            /* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
            /* .is_host          = */ ggml_backend_metal_buffer_type_is_host,
        },
        /* .context = */ NULL,
    };

    return &ggml_backend_buffer_type_metal;
}

// buffer from ptr

ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
    struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));

    ctx->all_data = data;
    ctx->all_size = size;
    ctx->owned = false;
    ctx->n_buffers = 0;

    const size_t size_page = sysconf(_SC_PAGESIZE);

    // page-align the data ptr
    {
        const uintptr_t offs = (uintptr_t) data % size_page;
        data  = (void *) ((char *) data - offs);
        size += offs;
    }

    size_t size_aligned = size;
    if ((size_aligned % size_page) != 0) {
        size_aligned += (size_page - (size_aligned % size_page));
    }

    id<MTLDevice> device = ggml_backend_metal_get_device();

    // the buffer fits into the max buffer size allowed by the device
    if (size_aligned <= device.maxBufferLength) {
        ctx->buffers[ctx->n_buffers].data = data;
        ctx->buffers[ctx->n_buffers].size = size;

        ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];

        if (ctx->buffers[ctx->n_buffers].metal == nil) {
            GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
            return false;
        }

        GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);

        ++ctx->n_buffers;
    } else {
        // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
        // one of the views
        const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
        const size_t size_step = device.maxBufferLength - size_ovlp;
        const size_t size_view = device.maxBufferLength;

        for (size_t i = 0; i < size; i += size_step) {
            const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);

            ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
            ctx->buffers[ctx->n_buffers].size = size_step_aligned;

            ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];

            if (ctx->buffers[ctx->n_buffers].metal == nil) {
                GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
                return false;
            }

            GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i);
            if (i + size_step < size) {
                GGML_METAL_LOG_INFO("\n");
            }

            ++ctx->n_buffers;
        }
    }

#if TARGET_OS_OSX
    GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
            device.currentAllocatedSize / 1024.0 / 1024.0,
            device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);

    if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
        GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
    } else {
        GGML_METAL_LOG_INFO("\n");
    }
#else
    GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif

    return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
}

// backend

static const char * ggml_backend_metal_name(ggml_backend_t backend) {
    return "Metal";

    UNUSED(backend);
}

static void ggml_backend_metal_free(ggml_backend_t backend) {
    struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
    ggml_metal_free(ctx);
    free(backend);
}

static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
    return ggml_backend_metal_buffer_type();

    UNUSED(backend);
}

static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
    struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;

    return ggml_metal_graph_compute(metal_ctx, cgraph);
}

static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
    struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;

    return ggml_metal_supports_op(metal_ctx, op);
}

static struct ggml_backend_i ggml_backend_metal_i = {
    /* .get_name                = */ ggml_backend_metal_name,
    /* .free                    = */ ggml_backend_metal_free,
    /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
    /* .set_tensor_async        = */ NULL,
    /* .get_tensor_async        = */ NULL,
    /* .cpy_tensor_async        = */ NULL,
    /* .synchronize             = */ NULL,
    /* .graph_plan_create       = */ NULL,
    /* .graph_plan_free         = */ NULL,
    /* .graph_plan_compute      = */ NULL,
    /* .graph_compute           = */ ggml_backend_metal_graph_compute,
    /* .supports_op             = */ ggml_backend_metal_supports_op,
};

void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
    ggml_metal_log_callback  = log_callback;
    ggml_metal_log_user_data = user_data;
}

ggml_backend_t ggml_backend_metal_init(void) {
    struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);

    if (ctx == NULL) {
        return NULL;
    }

    ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));

    *metal_backend = (struct ggml_backend) {
        /* .interface = */ ggml_backend_metal_i,
        /* .context   = */ ctx,
    };

    return metal_backend;
}

bool ggml_backend_is_metal(ggml_backend_t backend) {
    return backend && backend->iface.get_name == ggml_backend_metal_name;
}

void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
    GGML_ASSERT(ggml_backend_is_metal(backend));

    struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;

    ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
}

bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
    GGML_ASSERT(ggml_backend_is_metal(backend));

    struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;

    return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}

ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning

ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
    return ggml_backend_metal_init();

    GGML_UNUSED(params);
    GGML_UNUSED(user_data);
}