1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
use std::fmt::Display;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Mul;
use std::ops::Sub;
use std::ops::SubAssign;

use super::vector::Vector;

pub trait ModularDecompose<T> {
    fn modular_decompose(&self, n: T) -> (T, T);
    fn mod_n(&self, n: T) -> T {
        self.modular_decompose(n).1
    }
}

pub trait ModularAdd {
    fn add_n(&self, rhs: Self, n: Self) -> Self;
}
pub trait ModularSub {
    fn sub_n(&self, rhs: Self, n: Self) -> Self;
}
pub trait ModularMul {
    fn mul_n(&self, rhs: Self, n: Self) -> Self;
}
pub trait ModularAddAssign {
    fn addassign_n(&mut self, rhs: Self, n: Self);
}
pub trait ModularSubAssign {
    fn subassign_n(&mut self, rhs: Self, n: Self);
}

macro_rules! modular_primitives {
    ($($t:ty),*) => {$(
        impl ModularDecompose<$t> for $t {
            fn modular_decompose(&self, n: $t) -> ($t, $t) {
                let mut value = *self;
                let mut count = 0;
                while value >= n {
                    value -= n;
                    count += 1;
                }
                #[allow(unused_comparisons)]
                while value < 0 {
                    value += n;
                    count -= 1;
                }
                (count, value)
            }
        }

        impl ModularAdd for $t {
            fn add_n(&self, rhs: Self, n: Self) -> Self {
                (self.mod_n(n) + rhs.mod_n(n)).mod_n(n)
            }
        }
        impl ModularSub for $t {
            fn sub_n(&self, rhs: Self, n: Self) -> Self {
                (self.mod_n(n) + (n - rhs.mod_n(n))).mod_n(n)
            }
        }
        impl ModularMul for $t {
            fn mul_n(&self, rhs: Self, n: Self) -> Self {
                (self.mod_n(n) * rhs.mod_n(n)).mod_n(n)
            }
        }
        impl ModularAddAssign for $t {
            fn addassign_n(&mut self, rhs: Self, n: Self) {
                *self = self.add_n(rhs, n)
            }
        }
        impl ModularSubAssign for $t {
            fn subassign_n(&mut self, rhs: Self, n: Self) {
                *self = self.sub_n(rhs, n)
            }
        }
    )*};
}

modular_primitives!(usize, i32);

impl<const C: usize, T: Copy + ModularAdd> ModularAdd for Vector<C, T> {
    fn add_n(&self, rhs: Self, n: Self) -> Self {
        let mut values = self.values.clone();
        for i in 0..C {
            values[i] = self.values[i].add_n(rhs.values[i], n.values[i]);
        }
        Self { values }
    }
}

impl<const C: usize, T: Copy + ModularSub> ModularSub for Vector<C, T> {
    fn sub_n(&self, rhs: Self, n: Self) -> Self {
        let mut values = self.values.clone();
        for i in 0..C {
            values[i] = self.values[i].sub_n(rhs.values[i], n.values[i]);
        }
        Self { values }
    }
}

impl<const C: usize, T: Copy + ModularAddAssign> ModularAddAssign for Vector<C, T> {
    fn addassign_n(&mut self, rhs: Self, n: Self) {
        for i in 0..C {
            self.values[i].addassign_n(rhs.values[i], n.values[i]);
        }
    }
}

impl<const C: usize, T: Copy + ModularSubAssign> ModularSubAssign for Vector<C, T> {
    fn subassign_n(&mut self, rhs: Self, n: Self) {
        for i in 0..C {
            self.values[i].subassign_n(rhs.values[i], n.values[i]);
        }
    }
}

macro_rules! modular_type {
    ($n:ident, $t:ty) => {
        #[derive(Debug, Clone, Copy, PartialEq, Eq)]
        pub struct $n<const C: $t>($t);

        impl<const C: $t> $n<C> {
            pub fn new(value: $t) -> Self {
                Self(Self(value).mod_n(C))
            }

            pub fn get(&self) -> $t {
                self.0
            }
        }

        impl<const C: $t> ModularDecompose<$t> for $n<C> {
            fn modular_decompose(&self, n: $t) -> ($t, $t) {
                self.0.modular_decompose(n)
            }
        }

        impl<const C: $t> Add for $n<C> {
            type Output = Self;
            fn add(self, rhs: Self) -> Self {
                Self(self.0.add_n(rhs.0, C))
            }
        }

        impl<const C: $t> AddAssign for $n<C> {
            fn add_assign(&mut self, rhs: Self) {
                self.0.addassign_n(rhs.0, C)
            }
        }

        impl<const C: $t> Sub for $n<C> {
            type Output = Self;
            fn sub(self, rhs: Self) -> Self {
                Self(self.0.sub_n(rhs.0, C))
            }
        }

        impl<const C: $t> SubAssign for $n<C> {
            fn sub_assign(&mut self, rhs: Self) {
                self.0.subassign_n(rhs.0, C)
            }
        }

        impl<const C: $t> Mul for $n<C> {
            type Output = Self;
            fn mul(self, rhs: Self) -> Self {
                Self(self.0.mul_n(rhs.0, C))
            }
        }

        impl<const C: $t> Display for $n<C> {
            fn fmt(
                &self,
                f: &mut std::fmt::Formatter<'_>,
            ) -> std::result::Result<(), std::fmt::Error> {
                write!(f, "{} (mod {})", self.0, C)
            }
        }
    };
}

modular_type!(Modi32, i32);
modular_type!(Modusize, usize);

#[cfg(test)]
mod tests {
    use super::{Modi32, Modusize};

    #[test]
    fn modular_test() {
        let a = Modusize::<5>::new(13);
        assert_eq!(a, Modusize(3));
    }

    #[test]
    fn modular_test_negative() {
        let a = Modi32::<5>::new(-3);
        assert_eq!(a, Modi32(2));
    }

    #[test]
    fn modular_add_test() {
        let a = Modusize::<5>(3);
        let b = Modusize(4);
        assert_eq!(a + b, Modusize(2));
    }
}