1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
use crate::error::{PreprocessingError, Result};
use linfa::dataset::{AsTargets, Records, WithLapack, WithoutLapack};
use linfa::traits::{Fit, Transformer};
use linfa::{DatasetBase, Float};
use ndarray::{Array1, Array2, ArrayBase, ArrayView1, ArrayView2, Axis, Data, Ix2};
use ndarray_linalg::cholesky::{Cholesky, UPLO};
use ndarray_linalg::solve::Inverse;
use ndarray_linalg::svd::SVD;
use ndarray_linalg::Scalar;
pub enum WhiteningMethod {
Pca,
Zca,
Cholesky,
}
pub struct Whitener {
method: WhiteningMethod,
}
impl Whitener {
pub fn pca() -> Self {
Self {
method: WhiteningMethod::Pca,
}
}
pub fn zca() -> Self {
Self {
method: WhiteningMethod::Zca,
}
}
pub fn cholesky() -> Self {
Self {
method: WhiteningMethod::Cholesky,
}
}
pub fn method(mut self, method: WhiteningMethod) -> Self {
self.method = method;
self
}
}
impl<F: Float, D: Data<Elem = F>, T: AsTargets> Fit<ArrayBase<D, Ix2>, T, PreprocessingError>
for Whitener
{
type Object = FittedWhitener<F>;
fn fit(&self, x: &DatasetBase<ArrayBase<D, Ix2>, T>) -> Result<Self::Object> {
if x.nsamples() == 0 {
return Err(PreprocessingError::NotEnoughSamples);
}
let mean = x.records().mean_axis(Axis(0)).unwrap();
let sigma = x.records() - &mean;
let sigma = sigma.with_lapack();
let transformation_matrix = match self.method {
WhiteningMethod::Pca => {
let (_, s, v_t) = sigma.svd(false, true)?;
let mut v_t = v_t.unwrap().without_lapack();
let s = s.mapv(Scalar::from_real).without_lapack();
let s = s.mapv(|x: F| x.max(F::cast(1e-8)));
let cov_scale = F::cast(x.nsamples() - 1).sqrt();
for (mut v_t, s) in v_t.axis_iter_mut(Axis(0)).zip(s.iter()) {
v_t *= cov_scale / *s;
}
v_t
}
WhiteningMethod::Zca => {
let sigma = sigma.t().dot(&sigma) / F::Lapack::cast(x.nsamples() - 1);
let (u, s, _) = sigma.svd(true, false)?;
let u = u.unwrap().without_lapack();
let s = s.mapv(Scalar::from_real).without_lapack();
let s = s.mapv(|x: F| (F::one() / x.sqrt()).max(F::cast(1e-8)));
let lambda: Array2<F> = Array2::<F>::eye(s.len()) * s;
u.dot(&lambda).dot(&u.t())
}
WhiteningMethod::Cholesky => {
let sigma = sigma.t().dot(&sigma) / F::Lapack::cast(x.nsamples() - 1);
sigma.inv()?.cholesky(UPLO::Upper)?.without_lapack()
}
};
Ok(FittedWhitener {
transformation_matrix,
mean,
})
}
}
pub struct FittedWhitener<F: Float> {
transformation_matrix: Array2<F>,
mean: Array1<F>,
}
impl<F: Float> FittedWhitener<F> {
pub fn transformation_matrix(&self) -> ArrayView2<F> {
self.transformation_matrix.view()
}
pub fn mean(&self) -> ArrayView1<F> {
self.mean.view()
}
}
impl<F: Float> Transformer<Array2<F>, Array2<F>> for FittedWhitener<F> {
fn transform(&self, x: Array2<F>) -> Array2<F> {
(x - &self.mean).dot(&self.transformation_matrix.t())
}
}
impl<F: Float, D: Data<Elem = F>, T: AsTargets>
Transformer<DatasetBase<ArrayBase<D, Ix2>, T>, DatasetBase<Array2<F>, T>>
for FittedWhitener<F>
{
fn transform(&self, x: DatasetBase<ArrayBase<D, Ix2>, T>) -> DatasetBase<Array2<F>, T> {
let feature_names = x.feature_names();
let (records, targets, weights) = (x.records, x.targets, x.weights);
let records = self.transform(records.to_owned());
DatasetBase::new(records, targets)
.with_weights(weights)
.with_feature_names(feature_names)
}
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_abs_diff_eq;
use ndarray_rand::{
rand::distributions::Uniform, rand::rngs::SmallRng, rand::SeedableRng, RandomExt,
};
fn cov<D: Data<Elem = f64>>(x: &ArrayBase<D, Ix2>) -> Array2<f64> {
let mean = x.mean_axis(Axis(0)).unwrap();
let sigma = x - &mean;
let sigma = sigma.t().dot(&sigma) / ((x.dim().0 - 1) as f64);
sigma
}
fn inv_cov<D: Data<Elem = f64>>(x: &ArrayBase<D, Ix2>) -> Array2<f64> {
cov(x).inv().unwrap()
}
#[test]
fn test_zca_matrix() {
let mut rng = SmallRng::seed_from_u64(42);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::zca().fit(&dataset).unwrap();
let inv_cov_est = whitener
.transformation_matrix()
.t()
.dot(&whitener.transformation_matrix());
let inv_cov = inv_cov(dataset.records());
assert_abs_diff_eq!(inv_cov, inv_cov_est, epsilon = 1e-9);
}
#[test]
fn test_cholesky_matrix() {
let mut rng = SmallRng::seed_from_u64(42);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::cholesky().fit(&dataset).unwrap();
let inv_cov_est = whitener
.transformation_matrix()
.t()
.dot(&whitener.transformation_matrix());
let inv_cov = inv_cov(dataset.records());
assert_abs_diff_eq!(inv_cov, inv_cov_est, epsilon = 1e-10);
}
#[test]
fn test_pca_matrix() {
let mut rng = SmallRng::seed_from_u64(42);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::pca().fit(&dataset).unwrap();
let inv_cov_est = whitener
.transformation_matrix()
.t()
.dot(&whitener.transformation_matrix());
let inv_cov = inv_cov(dataset.records());
assert_abs_diff_eq!(inv_cov, inv_cov_est, epsilon = 1e-10);
}
#[test]
fn test_cholesky_whitening() {
let mut rng = SmallRng::seed_from_u64(64);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::cholesky().fit(&dataset).unwrap();
let whitened = whitener.transform(dataset);
let cov = cov(whitened.records());
assert_abs_diff_eq!(cov, Array2::eye(cov.dim().0), epsilon = 1e-10)
}
#[test]
fn test_zca_whitening() {
let mut rng = SmallRng::seed_from_u64(64);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::zca().fit(&dataset).unwrap();
let whitened = whitener.transform(dataset);
let cov = cov(whitened.records());
assert_abs_diff_eq!(cov, Array2::eye(cov.dim().0), epsilon = 1e-10)
}
#[test]
fn test_pca_whitening() {
let mut rng = SmallRng::seed_from_u64(64);
let dataset = Array2::random_using((1000, 7), Uniform::from(-30. ..30.), &mut rng).into();
let whitener = Whitener::pca().fit(&dataset).unwrap();
let whitened = whitener.transform(dataset);
let cov = cov(whitened.records());
assert_abs_diff_eq!(cov, Array2::eye(cov.dim().0), epsilon = 1e-10)
}
#[test]
fn test_train_val_matrix() {
let (train, val) = linfa_datasets::diabetes().split_with_ratio(0.9);
let (train_dim, val_dim) = (train.records().dim(), val.records().dim());
let whitener = Whitener::pca().fit(&train).unwrap();
let whitened_train = whitener.transform(train);
let whitened_val = whitener.transform(val);
assert_eq!(train_dim, whitened_train.records.dim());
assert_eq!(val_dim, whitened_val.records.dim());
}
#[test]
fn test_retain_feature_names() {
let dataset = linfa_datasets::diabetes();
let original_feature_names = dataset.feature_names();
let transformed = Whitener::cholesky()
.fit(&dataset)
.unwrap()
.transform(dataset);
assert_eq!(original_feature_names, transformed.feature_names())
}
#[test]
#[should_panic]
fn test_pca_fail_on_empty_input() {
let dataset: DatasetBase<Array2<f64>, _> = Array2::zeros((0, 0)).into();
let _whitener = Whitener::pca().fit(&dataset).unwrap();
}
#[test]
#[should_panic]
fn test_zca_fail_on_empty_input() {
let dataset: DatasetBase<Array2<f64>, _> = Array2::zeros((0, 0)).into();
let _whitener = Whitener::zca().fit(&dataset).unwrap();
}
#[test]
#[should_panic]
fn test_cholesky_fail_on_empty_input() {
let dataset: DatasetBase<Array2<f64>, _> = Array2::zeros((0, 0)).into();
let _whitener = Whitener::cholesky().fit(&dataset).unwrap();
}
}