1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//! Isotonic
#![allow(non_snake_case)]
use crate::error::{LinearError, Result};
use ndarray::{s, stack, Array1, ArrayBase, Axis, Data, Ix1, Ix2};
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};

use std::cmp::Ordering;

use linfa::dataset::{AsSingleTargets, DatasetBase};
use linfa::traits::{Fit, PredictInplace};

pub trait Float: linfa::Float {}
impl Float for f32 {}
impl Float for f64 {}

/// An implementation of PVA algorithm from Best (1990)
/// for solving IRC problem
fn pva<F, D>(
    ys: &ArrayBase<D, Ix1>,
    weights: Option<&[f32]>,
    index: &Vec<usize>,
) -> (Vec<F>, Vec<usize>)
where
    F: Float,
    D: Data<Elem = F>,
{
    let n = ys.len();
    let mut V = Vec::<F>::new();
    let mut W = Vec::<F>::new();
    let mut J_index: Vec<usize> = (0..n).collect();
    let mut i = 0;
    let (mut AvB_zero, mut W_B_zero) = waverage(&ys, weights, i, i, &index);
    while i < n {
        // Step 1
        let j = J_index[i];
        let k = j + 1;
        if k == n {
            break;
        }
        let l = J_index[k];
        let (AvB_plus, W_B_plus) = waverage(&ys, weights, k, l, &index);
        if AvB_zero <= AvB_plus {
            V.push(AvB_zero);
            W.push(W_B_zero);
            AvB_zero = AvB_plus;
            W_B_zero = W_B_plus;
            i = k;
        } else {
            // Step 2
            J_index[i] = l;
            J_index[l] = i;
            AvB_zero = AvB_zero * W_B_zero + AvB_plus * W_B_plus;
            W_B_zero += W_B_plus;
            AvB_zero /= W_B_zero;

            // Step 2.1
            let mut AvB_minus = *V.last().unwrap_or(&F::neg_infinity());
            while V.len() > 0 && AvB_zero < AvB_minus {
                AvB_minus = V.pop().unwrap();
                let W_B_minus = W.pop().unwrap();
                i = J_index[J_index[l] - 1];
                J_index[l] = i;
                J_index[i] = l;
                AvB_zero = AvB_zero * W_B_zero + AvB_minus * W_B_minus;
                W_B_zero += W_B_minus;
                AvB_zero /= W_B_zero;
            }
        }
    }

    // Last block average
    let (AvB_minus, _) = waverage(&ys, weights, i, J_index[i], &index);
    V.push(AvB_minus);

    (V, J_index)
}

#[derive(Debug, Clone, PartialEq, Eq, Default)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
/// An isotonic regression model.
///
/// IsotonicRegression solves an isotonic regression problem using the pool
/// adjacent violators algorithm.
///
/// ## Examples
///
/// Here's an example on how to train an isotonic regression model on
/// the first feature from the `diabetes` dataset.
/// ```rust
/// use linfa::{traits::Fit, traits::Predict, Dataset};
/// use linfa_linear::IsotonicRegression;
/// use linfa::prelude::SingleTargetRegression;
///
/// let diabetes = linfa_datasets::diabetes();
/// let dataset = diabetes.feature_iter().next().unwrap(); // get first 1D feature
/// let model = IsotonicRegression::default().fit(&dataset).unwrap();
/// let pred = model.predict(&dataset);
/// let r2 = pred.r2(&dataset).unwrap();
/// println!("r2 from prediction: {}", r2);
/// ```
///
/// ## References
///
/// Best, M.J., Chakravarti, N. Active set algorithms for isotonic regression;
/// A unifying framework. Mathematical Programming 47, 425–439 (1990).
pub struct IsotonicRegression {}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
/// A fitted isotonic regression model which can be used for making predictions.
pub struct FittedIsotonicRegression<F> {
    regressor: Array1<F>,
    response: Array1<F>,
}

impl IsotonicRegression {
    /// Create a default isotonic regression model.
    pub fn new() -> IsotonicRegression {
        IsotonicRegression {}
    }
}

impl<F: Float, D: Data<Elem = F>, T: AsSingleTargets<Elem = F>>
    Fit<ArrayBase<D, Ix2>, T, LinearError<F>> for IsotonicRegression
{
    type Object = FittedIsotonicRegression<F>;

    /// Fit an isotonic regression model given a feature matrix `X` and a target
    /// variable `y`.
    ///
    /// The feature matrix `X` must have shape `(n_samples, 1)`
    ///
    /// The target variable `y` must have shape `(n_samples)`
    ///
    /// Returns a `FittedIsotonicRegression` object which contains the fitted
    /// parameters and can be used to `predict` values of the target variable
    /// for new feature values.
    fn fit(&self, dataset: &DatasetBase<ArrayBase<D, Ix2>, T>) -> Result<Self::Object, F> {
        let X = dataset.records();
        let (n, dim) = X.dim();
        let y = dataset.as_single_targets();

        // Check the input dimension
        assert_eq!(dim, 1, "The input dimension must be 1.");

        // Check that our inputs have compatible shapes
        assert_eq!(y.dim(), n);

        // use correlation for determining relationship between x & y
        let x = X.column(0);
        let rho = DatasetBase::from(stack![Axis(1), x, y]).pearson_correlation();
        let increasing = rho.get_coeffs()[0] >= F::zero();

        // sort data
        let mut indices = argsort_by(&x, |a, b| a.partial_cmp(b).unwrap_or(Ordering::Greater));
        if !increasing {
            indices.reverse();
        };

        // Construct response value using particular algorithm
        let (V, J_index) = pva(&y, dataset.weights(), &indices);
        let response = Array1::from_vec(V.clone());

        // Construct regressor array
        let mut W = Vec::<F>::new();
        let mut i = 0;
        while i < n {
            let j = J_index[i];
            let x = X
                .slice(s![i..=j, -1])
                .into_iter()
                .max_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Greater))
                .unwrap();
            W.push(*x);
            i = j + 1
        }
        let regressor = Array1::from_vec(W.clone());

        Ok(FittedIsotonicRegression {
            regressor,
            response,
        })
    }
}

fn waverage<F, D>(
    vs: &ArrayBase<D, Ix1>,
    ws: Option<&[f32]>,
    start: usize,
    end: usize,
    index: &Vec<usize>,
) -> (F, F)
where
    F: Float,
    D: Data<Elem = F>,
{
    let mut wsum = F::zero();
    let mut avg = F::zero();
    for k in start..=end {
        let kk = index[k];
        let w = if ws.is_none() {
            F::one()
        } else {
            F::cast(ws.unwrap()[kk])
        };
        wsum += w;
        avg += vs[kk] * w;
    }
    avg /= wsum;
    (avg, wsum)
}

fn argsort_by<S, F>(arr: &ArrayBase<S, Ix1>, mut compare: F) -> Vec<usize>
where
    S: Data,
    F: FnMut(&S::Elem, &S::Elem) -> Ordering,
{
    let mut indices: Vec<usize> = (0..arr.len()).collect();
    indices.sort_unstable_by(move |&i, &j| compare(&arr[i], &arr[j]));
    indices
}

impl<F: Float, D: Data<Elem = F>> PredictInplace<ArrayBase<D, Ix2>, Array1<F>>
    for FittedIsotonicRegression<F>
{
    /// Given an input matrix `X`, with shape `(n_samples, 1)`,
    /// `predict` returns the target variable according to linear model
    /// learned from the training data distribution.
    fn predict_inplace(&self, x: &ArrayBase<D, Ix2>, y: &mut Array1<F>) {
        let (n_samples, dim) = x.dim();

        // Check the input dimension
        assert_eq!(dim, 1, "The input dimension must be 1.");

        // Check that our inputs have compatible shapes
        assert_eq!(
            n_samples,
            y.len(),
            "The number of data points must match the number of output targets."
        );

        let regressor = &self.regressor;
        let n = regressor.len();
        let x_min = regressor[0];
        let x_max = regressor[n - 1];

        let response = &self.response;
        let y_min = response[0];
        let y_max = response[n - 1];

        // calculate a piecewise linear approximation of response
        for (i, row) in x.rows().into_iter().enumerate() {
            let val = row[0];
            if val >= x_max {
                y[i] = y_max;
            } else if val <= x_min {
                y[i] = y_min;
            } else {
                let res = regressor.into_iter().position(|x| x >= &val);
                if res.is_some() {
                    let j = res.unwrap();
                    if val <= regressor[j] && j < n {
                        let x_scale = (val - regressor[j - 1]) / (regressor[j] - regressor[j - 1]);
                        y[i] = response[j - 1] + x_scale * (response[j] - response[j - 1]);
                    } else {
                        y[i] = y_min;
                    }
                }
            }
        }
    }

    fn default_target(&self, x: &ArrayBase<D, Ix2>) -> Array1<F> {
        Array1::zeros(x.nrows())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_abs_diff_eq;
    use linfa::{traits::Predict, Dataset};
    use ndarray::array;

    #[test]
    fn autotraits() {
        fn has_autotraits<T: Send + Sync + Sized + Unpin>() {}
        has_autotraits::<FittedIsotonicRegression<f64>>();
        has_autotraits::<IsotonicRegression>();
        has_autotraits::<LinearError<f64>>();
    }

    #[test]
    #[should_panic]
    fn dimension_mismatch() {
        let reg = IsotonicRegression::new();
        let dataset = Dataset::new(array![[3.3f64, 0.], [3.3, 0.]], array![4., 5.]);
        let _res = reg.fit(&dataset);
        ()
    }

    #[test]
    #[should_panic]
    fn length_mismatch() {
        let reg = IsotonicRegression::default();
        let dataset = Dataset::new(array![[3.3f64, 0.], [3.3, 0.]], array![4., 5., 6.]);
        let _res = reg.fit(&dataset);
        ()
    }

    #[test]
    fn best_example1() {
        let reg = IsotonicRegression::new();
        let (X, y, regr, resp, yy, V, w) = (
            array![[3.3f64], [3.3], [3.3], [6.], [7.5], [7.5]], // X
            array![4., 5., 1., 6., 8., 7.0],                    // y
            array![3.3, 6., 7.5],                               // regressor
            array![10.0 / 3.0, 6., 7.5],                        // response
            array![10. / 3., 10. / 3., 10. / 3., 6., 7.5, 7.5], // predict X
            array![[2.0f64], [5.], [7.], [9.]],                 // newX
            array![10. / 3., 5.01234567901234, 7., 7.5],        // predict newX
        );

        let dataset = Dataset::new(X, y);

        let model = reg.fit(&dataset).unwrap();
        assert_abs_diff_eq!(model.regressor, &regr, epsilon = 1e-12);
        assert_abs_diff_eq!(model.response, &resp, epsilon = 1e-12);

        let result = model.predict(dataset.records());
        assert_abs_diff_eq!(result, &yy, epsilon = 1e-12);

        let result = model.predict(&V);
        assert_abs_diff_eq!(result, &w, epsilon = 1e-12);
    }

    #[test]
    fn best_example1_decr() {
        let reg = IsotonicRegression::default();
        let (X, y, regr, resp, yy, V, w) = (
            array![[7.5], [7.5], [6.], [3.3], [3.3], [3.3]], // X
            array![4., 5., 1., 6., 8., 7.0],                 // y
            array![7.5, 3.3, 3.3],
            array![10.0 / 3.0, 7., 7.],
            array![7., 7., 7., 7., 7., 7.],     // predict X
            array![[2.], [3.], [3.3], [7.]],    // newX
            array![10. / 3., 10. / 3., 7., 7.], // predict newX
        );

        let dataset = Dataset::new(X, y);

        let model = reg.fit(&dataset).unwrap();
        assert_abs_diff_eq!(model.regressor, &regr, epsilon = 1e-12);
        assert_abs_diff_eq!(model.response, &resp, epsilon = 1e-12);

        let result = model.predict(dataset.records());
        assert_abs_diff_eq!(result, &yy, epsilon = 1e-12);

        let result = model.predict(&V);
        assert_abs_diff_eq!(result, &w, epsilon = 1e-12);
    }

    #[test]
    fn example2_incr() {
        let reg = IsotonicRegression::default();
        let (X, y, regr, resp, yy) = (
            array![[1.0f64], [2.], [3.], [4.], [5.], [6.], [7.], [8.], [9.]],
            array![1., 2., 6., 2., 1., 2., 8., 2., 1.0],
            array![1., 2., 6., 9.],
            array![1., 2., 2.75, 11. / 3.],
            array![
                1.,
                2.,
                2.1875,
                2.375,
                2.5625,
                2.75,
                55. / 18.,
                121. / 36.,
                11. / 3.
            ],
        );

        let dataset = Dataset::new(X, y);

        let model = reg.fit(&dataset).unwrap();
        assert_abs_diff_eq!(model.regressor, &regr, epsilon = 1e-12);
        assert_abs_diff_eq!(model.response, &resp, epsilon = 1e-12);

        let result = model.predict(dataset.records());
        assert_abs_diff_eq!(result, &yy, epsilon = 1e-12);
    }

    #[test]
    fn example2_decr() {
        let reg = IsotonicRegression::default();
        let v1 = 11. / 3.;
        let (X, y, regr, resp, yy) = (
            array![[9.0], [8.], [7.], [6.], [5.], [4.], [3.], [2.], [1.]],
            array![1., 2., 6., 2., 1., 2., 8., 2., 1.0],
            array![9., 8., 7., 3.],
            array![1., 2., 2.75, v1],
            array![v1, v1, v1, v1, v1, v1, v1, 1., 1.],
        );

        let dataset = Dataset::new(X, y);

        let model = reg.fit(&dataset).unwrap();
        assert_abs_diff_eq!(model.regressor, &regr, epsilon = 1e-12);
        assert_abs_diff_eq!(model.response, &resp, epsilon = 1e-12);

        let result = model.predict(dataset.records());
        assert_abs_diff_eq!(result, &yy, epsilon = 1e-12);
    }
}