1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
//! # Hierarchical Clustering
//!
//! `linfa-hierarchical` provides an implementation of agglomerative hierarchical clustering.
//! In this clustering algorithm, each point is first considered as a separate cluster. During each
//! step, two points are merged into new clusters, until a stopping criterion is reached. The distance
//! between the points is computed as the negative-log transform of the similarity kernel.
//!
//! _Documentation_: [latest](https://docs.rs/linfa-hierarchical).
//!
//! ## The big picture
//!
//! `linfa-hierarchical` is a crate in the [`linfa`](https://crates.io/crates/linfa) ecosystem,
//! a wider effort to bootstrap a toolkit for classical Machine Learning implemented in pure Rust,
//! akin in spirit to Python's `scikit-learn`.
//!
//! ## Current state
//!
//! `linfa-hierarchical` implements agglomerative hierarchical clustering with support of the
//! [kodama](https://docs.rs/kodama/0.2.3/kodama/) crate.
use std::collections::HashMap;
use kodama::linkage;
pub use kodama::Method;
use linfa::param_guard::TransformGuard;
use linfa::traits::Transformer;
use linfa::Float;
use linfa::{dataset::DatasetBase, ParamGuard};
use linfa_kernel::Kernel;
pub use error::{HierarchicalError, Result};
mod error;
/// Criterion when to stop merging
///
/// The criterion defines at which point the merging process should stop. This can be either, when
/// a certain number of clusters is reached, or the distance becomes larger than a maximal
/// distance.
#[derive(Clone, Debug, PartialEq)]
pub enum Criterion<F: Float> {
NumClusters(usize),
Distance(F),
}
/// Agglomerative hierarchical clustering
///
/// In this clustering algorithm, each point is first considered as a separate cluster. During each
/// step, two points are merged into new clusters, until a stopping criterion is reached. The distance
/// between the points is computed as the negative-log transform of the similarity kernel.
#[derive(Default, Debug, Clone, PartialEq)]
pub struct HierarchicalCluster<T: Float>(ValidHierarchicalCluster<T>);
/// Checked version of [`HierarchicalCluster`](`HierarchicalCluster`)
#[derive(Clone, Debug, PartialEq)]
pub struct ValidHierarchicalCluster<T: Float> {
method: Method,
stopping: Criterion<T>,
}
impl<F: Float> ParamGuard for HierarchicalCluster<F> {
type Checked = ValidHierarchicalCluster<F>;
type Error = HierarchicalError<F>;
fn check_ref(&self) -> std::result::Result<&Self::Checked, Self::Error> {
match self.0.stopping {
Criterion::NumClusters(x) if x == 0 => Err(
HierarchicalError::InvalidStoppingCondition(self.0.stopping.clone()),
),
Criterion::Distance(x) if x.is_negative() || x.is_nan() || x.is_infinite() => Err(
HierarchicalError::InvalidStoppingCondition(self.0.stopping.clone()),
),
_ => Ok(&self.0),
}
}
fn check(self) -> std::result::Result<Self::Checked, Self::Error> {
self.check_ref()?;
Ok(self.0)
}
}
impl<F: Float> TransformGuard for HierarchicalCluster<F> {}
impl<F: Float> HierarchicalCluster<F> {
/// Select a merging method
pub fn with_method(mut self, method: Method) -> HierarchicalCluster<F> {
self.0.method = method;
self
}
/// Stop merging when a certain number of clusters are reached
///
/// In the fitting process points are merged until a certain criterion is reached. With this
/// option the merging process will stop, when the number of clusters drops below this value.
pub fn num_clusters(mut self, num_clusters: usize) -> HierarchicalCluster<F> {
self.0.stopping = Criterion::NumClusters(num_clusters);
self
}
/// Stop merging when a certain distance is reached
///
/// In the fitting process points are merged until a certain criterion is reached. With this
/// option the merging process will stop, then the distance exceeds this value.
pub fn max_distance(mut self, max_distance: F) -> HierarchicalCluster<F> {
self.0.stopping = Criterion::Distance(max_distance);
self
}
}
impl<F: Float> Transformer<Kernel<F>, DatasetBase<Kernel<F>, Vec<usize>>>
for ValidHierarchicalCluster<F>
{
/// Perform hierarchical clustering of a similarity matrix
///
/// Returns the class id for each data point
fn transform(&self, kernel: Kernel<F>) -> DatasetBase<Kernel<F>, Vec<usize>> {
// ignore all similarities below this value
let threshold = F::cast(1e-6);
// transform similarities to distances with log transformation
let mut distance = kernel
.to_upper_triangle()
.into_iter()
.map(|x| {
if x > threshold {
-x.ln()
} else {
-threshold.ln()
}
})
.collect::<Vec<_>>();
// call kodama linkage function
let num_observations = kernel.size();
let res = linkage(&mut distance, num_observations, self.method);
// post-process results, iterate through merging step until threshold is reached
// at the beginning every node is in its own cluster
let mut clusters = (0..num_observations)
.map(|x| (x, vec![x]))
.collect::<HashMap<_, _>>();
// counter for new clusters, which are formed as unions of previous ones
let mut ct = num_observations;
for step in res.steps() {
let should_stop = match self.stopping {
Criterion::NumClusters(max_clusters) => clusters.len() <= max_clusters,
Criterion::Distance(dis) => step.dissimilarity >= dis,
};
// break if one of the two stopping condition is reached
if should_stop {
break;
}
// combine ids from both clusters
let mut ids = Vec::with_capacity(2);
let mut cl = clusters.remove(&step.cluster1).unwrap();
ids.append(&mut cl);
let mut cl = clusters.remove(&step.cluster2).unwrap();
ids.append(&mut cl);
// insert into hashmap and increase counter
clusters.insert(ct, ids);
ct += 1;
}
// flatten resulting clusters and reverse index
let mut tmp = vec![0; num_observations];
for (i, (_, ids)) in clusters.into_iter().enumerate() {
for id in ids {
tmp[id] = i;
}
}
// return node_index -> cluster_index map
DatasetBase::new(kernel, tmp)
}
}
impl<F: Float, T> Transformer<DatasetBase<Kernel<F>, T>, DatasetBase<Kernel<F>, Vec<usize>>>
for ValidHierarchicalCluster<F>
{
/// Perform hierarchical clustering of a similarity matrix
///
/// Returns the class id for each data point
fn transform(&self, dataset: DatasetBase<Kernel<F>, T>) -> DatasetBase<Kernel<F>, Vec<usize>> {
self.transform(dataset.records)
}
}
/// Initialize hierarchical clustering, which averages in-cluster points and stops when two
/// clusters are reached.
impl<T: Float> Default for ValidHierarchicalCluster<T> {
fn default() -> Self {
Self {
method: Method::Average,
stopping: Criterion::NumClusters(2),
}
}
}
#[cfg(test)]
mod tests {
use crate::HierarchicalError;
use linfa::traits::Transformer;
use linfa_kernel::{Kernel, KernelMethod};
use ndarray::{Array, Axis};
use ndarray_rand::{rand_distr::Normal, RandomExt};
use super::{Criterion, HierarchicalCluster, ValidHierarchicalCluster};
#[test]
fn autotraits() {
fn has_autotraits<T: Send + Sync + Sized + Unpin>() {}
has_autotraits::<Criterion<f64>>();
has_autotraits::<HierarchicalCluster<f64>>();
has_autotraits::<ValidHierarchicalCluster<f64>>();
has_autotraits::<HierarchicalError<f64>>();
}
#[test]
fn test_blobs() {
// we have 10 observations per cluster
let npoints = 10;
// generate data
let entries = ndarray::concatenate(
Axis(0),
&[
Array::random((npoints, 2), Normal::new(-1., 0.1).unwrap()).view(),
Array::random((npoints, 2), Normal::new(1., 0.1).unwrap()).view(),
],
)
.unwrap();
let kernel = Kernel::params()
.method(KernelMethod::Gaussian(5.0))
.transform(entries.view());
let kernel = HierarchicalCluster::default()
.max_distance(0.1)
.transform(kernel)
.unwrap();
// check that all assigned ids are equal for the first cluster
let ids = kernel.targets();
let first_cluster_id = &ids[0];
assert!(ids
.iter()
.take(npoints)
.all(|item| item == first_cluster_id));
// and for the second
let second_cluster_id = &ids[npoints];
assert!(ids
.iter()
.skip(npoints)
.all(|item| item == second_cluster_id));
// the cluster ids shouldn't be equal
assert_ne!(first_cluster_id, second_cluster_id);
// perform hierarchical clustering until we have two clusters left
let kernel = HierarchicalCluster::default()
.num_clusters(2)
.transform(kernel)
.unwrap();
// check that all assigned ids are equal for the first cluster
let ids = kernel.targets();
let first_cluster_id = &ids[0];
assert!(ids
.iter()
.take(npoints)
.all(|item| item == first_cluster_id));
// and for the second
let second_cluster_id = &ids[npoints];
assert!(ids
.iter()
.skip(npoints)
.all(|item| item == second_cluster_id));
// the cluster ids shouldn't be equal
assert_ne!(first_cluster_id, second_cluster_id);
}
#[test]
fn test_noise() {
// generate 1000 normal distributed points
let data = Array::random((100, 2), Normal::new(0., 1.0).unwrap());
let kernel = Kernel::params()
.method(KernelMethod::Linear)
.transform(data.view());
let predictions = HierarchicalCluster::default()
.max_distance(3.0)
.transform(kernel)
.unwrap();
dbg!(&predictions.targets());
}
}