1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/*
Line and line segment library for 2d and 3d.
Copyright (C) 2021 eadf https://github.com/eadf
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like
this when it starts in an interactive mode:
Linestring Copyright (C) 2021 eadf
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it under certain
conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands might
be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License. But first, please read <https://www.gnu.org/
licenses /why-not-lgpl.html>.
*/
use super::linestring_3d;
#[allow(unused_imports)]
use crate::LinestringError;
use cgmath::{ulps_eq, InnerSpace, MetricSpace, Point2, Point3, Transform, Vector2};
use itertools::Itertools;
#[allow(unused_imports)]
use rayon::prelude::*;
use std::collections;
use std::fmt;
/// Module containing the convex hull calculations
pub mod convex_hull;
/// Module containing the intersection calculations
pub mod intersection;
/// Placeholder for different 2d shapes
pub enum Shape2d<T: cgmath::BaseFloat + Sync> {
Line(Line2<T>),
Linestring(LineString2<T>),
ParabolicArc(VoronoiParabolicArc<T>),
}
/// A 2d line
#[derive(PartialEq, Eq, Copy, Clone, Hash, fmt::Debug)]
pub struct Line2<T: cgmath::BaseFloat + Sync> {
pub start: Point2<T>,
pub end: Point2<T>,
}
impl<T: cgmath::BaseFloat + Sync> Line2<T> {
pub fn new(start: Point2<T>, end: Point2<T>) -> Self {
Self { start, end }
}
/// Get any intersection point between line segments.
/// Note that this function always detects endpoint-to-endpoint intersections.
/// Most of this is from <https://stackoverflow.com/a/565282>
#[allow(clippy::many_single_char_names)]
#[allow(clippy::suspicious_operation_groupings)]
pub fn intersection_point(self, other: Self) -> Option<Intersection<T>> {
// AABB tests
if self.end.x > other.end.x
&& self.end.x > other.start.x
&& self.start.x > other.end.x
&& self.start.x > other.start.x
{
return None;
}
if self.end.x < other.end.x
&& self.end.x < other.start.x
&& self.start.x < other.end.x
&& self.start.x < other.start.x
{
return None;
}
if self.end.y > other.end.y
&& self.end.y > other.start.y
&& self.start.y > other.end.y
&& self.start.y > other.start.y
{
return None;
}
if self.end.y < other.end.y
&& self.end.y < other.start.y
&& self.start.y < other.end.y
&& self.start.y < other.start.y
{
return None;
}
let p = self.start;
let q = other.start;
let r = self.end - p;
let s = other.end - q;
let r_cross_s = cross_z(r, s);
let q_minus_p = q - p;
let q_minus_p_cross_r = cross_z(q_minus_p, r);
// If r × s = 0 then the two lines are parallel
if ulps_eq!(r_cross_s, T::zero()) {
// one (or both) of the lines may be a point
let self_is_a_point = point_ulps_eq(self.start, self.end);
let other_is_a_point = point_ulps_eq(other.start, other.end);
if self_is_a_point || other_is_a_point {
if self_is_a_point && other_is_a_point && point_ulps_eq(self.start, other.start) {
return Some(Intersection::Intersection(self.start));
}
return if self_is_a_point {
intersect_line_point(other, self.start)
} else {
intersect_line_point(self, other.start)
};
}
// If r × s = 0 and (q − p) × r = 0, then the two lines are collinear.
if ulps_eq!(&q_minus_p_cross_r, &T::zero()) {
let r_dot_r = r.dot(r);
let r_div_r_dot_r = r / r_dot_r;
let s_dot_r = s.dot(r);
let t0 = q_minus_p.dot(r_div_r_dot_r);
let t1 = t0 + s_dot_r / r_dot_r;
Some(Intersection::OverLap(Line2::new(
scale_to_coordinate(p, r, t0),
scale_to_coordinate(p, r, t1),
)))
} else {
// If r × s = 0 and (q − p) × r ≠ 0,
// then the two lines are parallel and non-intersecting.
None
}
} else {
// the lines are not parallel
let t = cross_z(q_minus_p, s / r_cross_s);
let u = cross_z(q_minus_p, r / r_cross_s);
// If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1,
// the two line segments meet at the point p + t r = q + u s.
if T::zero() <= t && t <= T::one() && T::zero() <= u && u <= T::one() {
Some(Intersection::Intersection(scale_to_coordinate(p, r, t)))
} else {
None
}
}
}
/// Intersection test for lines known to be connected by a middle point.
/// This function will *not* report the middle-point as an intersection.
/// Todo: how to handle start==middle||middle==end
pub fn intersection_point3(
start: Point2<T>,
middle: Point2<T>,
end: Point2<T>,
) -> Result<Option<Intersection<T>>, LinestringError> {
let middle_sub_start = Vector2 {
x: middle.x - start.x,
y: middle.y - start.x,
};
let middle_sub_end = Vector2 {
x: middle.x - end.x,
y: middle.y - end.y,
};
let start_is_vertical = ulps_eq!(&middle_sub_start.x, &T::zero());
let end_is_vertical = ulps_eq!(&middle_sub_end.x, &T::zero());
if start_is_vertical && end_is_vertical {
// both lines are vertical
if middle_sub_start.y.is_sign_negative() && !middle_sub_end.y.is_sign_negative() {
// opposite direction
return Ok(None);
} else {
// pick the shortest vector for overlap point
if (middle_sub_start.x * middle_sub_start.x
+ middle_sub_start.y * middle_sub_start.y)
< (middle_sub_end.x * middle_sub_end.x + middle_sub_end.y * middle_sub_end.y)
{
return Ok(Some(Intersection::OverLap(Line2 { start, end: middle })));
} else {
return Ok(Some(Intersection::OverLap(Line2 { start: middle, end })));
}
}
} else if start_is_vertical || end_is_vertical {
return Ok(None);
}
// both lines should now be non-vertical, we can compare their slope
let start_slope = middle_sub_start.x / middle_sub_start.y;
let end_slope = middle_sub_end.x / middle_sub_end.y;
if !ulps_eq!(&start_slope, &end_slope) {
return Ok(None);
}
// Slope identical, pick the shortest vector for overlap point
if (middle_sub_start.x * middle_sub_start.x + middle_sub_start.y * middle_sub_start.y)
< (middle_sub_end.x * middle_sub_end.x + middle_sub_end.y * middle_sub_end.y)
{
Ok(Some(Intersection::OverLap(Line2 { start, end: middle })))
} else {
Ok(Some(Intersection::OverLap(Line2 { start: middle, end })))
}
}
/// returns (area of a triangle)²*4
/// <https://en.wikipedia.org/wiki/Visvalingam–Whyatt_algorithm#Algorithm>
pub fn triangle_area_squared_times_4(p1: Point2<T>, p2: Point2<T>, p3: Point2<T>) -> T {
let area =
p1.x * p2.y + p2.x * p3.y + p3.x * p1.y - p1.x * p3.y - p2.x * p1.y - p3.x * p2.y;
area * area
}
/// Copy this lines2 into a line3, populating the axes defined by 'plane'
/// An axis will always try to keep it's position (e.g. y goes to y if possible).
/// That way the operation is reversible (with regards to axis positions).
pub fn copy_to_3d(&self, plane: linestring_3d::Plane) -> linestring_3d::Line3<T> {
linestring_3d::Line3::new(plane.point_to_3d(self.start), plane.point_to_3d(self.end))
}
}
#[allow(clippy::from_over_into)]
// Todo is this a subset of "impl<T> From<[T; 4]> for Line2<T>"?
impl<T: cgmath::BaseFloat + Sync> Into<[T; 4]> for Line2<T> {
fn into(self) -> [T; 4] {
[self.start.x, self.start.y, self.end.x, self.end.y]
}
}
// [Into<Point<T>>,Into<Point<T>>] -> Line2<T>
impl<T, IT> From<[IT; 2]> for Line2<T>
where
T: cgmath::BaseFloat + Sync,
IT: Copy + Into<Point2<T>>,
{
fn from(coordinate: [IT; 2]) -> Line2<T> {
Line2::<T>::new(coordinate[0].into(), coordinate[1].into())
}
}
// [T,T,T,T] -> Line2<T>
impl<T: cgmath::BaseFloat + Sync> From<[T; 4]> for Line2<T> {
fn from(coordinate: [T; 4]) -> Line2<T> {
Line2::<T>::new(
[coordinate[0], coordinate[1]].into(),
[coordinate[2], coordinate[3]].into(),
)
}
}
/// A parabolic arc as used in <https://github.com/eadf/boostvoronoi.rs>
/// This struct contains the parameters for the arc + the functionality to convert it to a
/// LineString2 or LineString3.
///
/// This parabola describes the equidistant curve between a point and a segment starting
/// at 'start_point' and ending at 'end_point'
/// This also mean that the distance between 'start_point'<->cell_point and
/// 'end_point'<->cell_point must be the same distance as 'start_point'<->segment &
/// 'end_point'<->segment
#[derive(Clone, Hash, fmt::Debug)]
pub struct VoronoiParabolicArc<T: cgmath::BaseFloat + Sync> {
// input geometry of voronoi graph
pub segment: Line2<T>,
pub cell_point: Point2<T>,
// vertex points in voronoi diagram. Aka edge start and end points. (Also called circle events)
pub start_point: Point2<T>,
pub end_point: Point2<T>,
}
impl<T: cgmath::BaseFloat + Sync> VoronoiParabolicArc<T> {
pub fn new(
segment: Line2<T>,
cell_point: Point2<T>,
start_point: Point2<T>,
end_point: Point2<T>,
) -> Self {
Self {
segment,
cell_point,
start_point,
end_point,
}
}
/// Convert this parable abstraction into discrete line segment sample points.
/// All of this code is ported from C++ boost 1.75.0
/// <https://www.boost.org/doc/libs/1_75_0/libs/polygon/doc/voronoi_main.htm>
pub fn discretise_2d(&self, max_dist: T) -> LineString2<T> {
let mut rv = LineString2::default().with_connected(false);
rv.points.push(self.start_point);
// Apply the linear transformation to move start point of the segment to
// the point with coordinates (0, 0) and the direction of the segment to
// coincide the positive direction of the x-axis.
let segm_vec_x = self.segment.end.x - self.segment.start.x;
let segm_vec_y = self.segment.end.y - self.segment.start.y;
let sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
// Compute x-coordinates of the endpoints of the edge
// in the transformed space.
let projection_start =
sqr_segment_length * Self::point_projection(self.start_point, self.segment);
let projection_end =
sqr_segment_length * Self::point_projection(self.end_point, self.segment);
// Compute parabola parameters in the transformed space.
// Parabola has next representation:
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
let point_vec_x = self.cell_point.x - self.segment.start.x;
let point_vec_y = self.cell_point.y - self.segment.start.y;
let rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
let rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
// Use stack to avoid recursion.
let mut point_stack = vec![projection_end];
let mut cur_x = projection_start;
let mut cur_y = Self::parabola_y(cur_x, rot_x, rot_y);
// Adjust max_dist parameter in the transformed space.
let max_dist_transformed = max_dist * max_dist * sqr_segment_length;
while !point_stack.is_empty() {
let new_x = point_stack[point_stack.len() - 1]; // was .top();
let new_y = Self::parabola_y(new_x, rot_x, rot_y);
// Compute coordinates of the point of the parabola that is
// furthest from the current line segment.
let mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
let mid_y = Self::parabola_y(mid_x, rot_x, rot_y);
// Compute maximum distance between the given parabolic arc
// and line segment that discretize it.
let mut dist = (new_y - cur_y) * (mid_x - cur_x) - (new_x - cur_x) * (mid_y - cur_y);
#[allow(clippy::suspicious_operation_groupings)]
{
dist = dist * dist
/ ((new_y - cur_y) * (new_y - cur_y) + (new_x - cur_x) * (new_x - cur_x));
}
if dist <= max_dist_transformed {
// Distance between parabola and line segment is less than max_dist.
let _ = point_stack.pop();
let inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) / sqr_segment_length
+ self.segment.start.x;
let inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) / sqr_segment_length
+ self.segment.start.y;
let p = Point2 {
x: inter_x,
y: inter_y,
};
rv.points.push(p);
cur_x = new_x;
cur_y = new_y;
} else {
point_stack.push(mid_x);
}
}
// Update last point.
let last_position = rv.points.len() - 1;
rv.points[last_position] = self.end_point;
rv
}
/// Convert this parable abstraction into a single straight line
pub fn discretise_3d_straight_line(&self) -> linestring_3d::LineString3<T> {
let mut rv = linestring_3d::LineString3::default().with_connected(false);
let distance =
-distance_to_line_squared_safe(self.segment.start, self.segment.end, self.start_point)
.sqrt();
rv.points
.push([self.start_point.x, self.start_point.y, distance].into());
let distance = -self.end_point.distance(self.cell_point);
rv.points
.push([self.end_point.x, self.end_point.y, distance].into());
rv
}
/// Convert this parable abstraction into discrete line segment sample points.
/// The Z component of the coordinates is the constant distance from the edge to point and
/// line segment (should be the same value)
///
/// All of this code is ported from C++ boost 1.75.0
/// <https://www.boost.org/doc/libs/1_75_0/libs/polygon/doc/voronoi_main.htm>
pub fn discretise_3d(&self, max_dist: T) -> linestring_3d::LineString3<T> {
let mut rv = linestring_3d::LineString3::default().with_connected(false);
let z_comp = -self.start_point.distance(self.cell_point);
rv.points
.push([self.start_point.x, self.start_point.y, z_comp].into());
let z_comp = -self.end_point.distance(self.cell_point);
// todo, don't insert end_point and then pop it again a few lines later..
rv.points
.push([self.end_point.x, self.end_point.y, z_comp].into());
// Apply the linear transformation to move start point of the segment to
// the point with coordinates (0, 0) and the direction of the segment to
// coincide the positive direction of the x-axis.
let segm_vec_x = self.segment.end.x - self.segment.start.x;
let segm_vec_y = self.segment.end.y - self.segment.start.y;
let sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
// Compute x-coordinates of the endpoints of the edge
// in the transformed space.
let projection_start =
sqr_segment_length * Self::point_projection_3d(&rv.points[0], &self.segment);
let projection_end =
sqr_segment_length * Self::point_projection_3d(&rv.points[1], &self.segment);
// Compute parabola parameters in the transformed space.
// Parabola has next representation:
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
let point_vec_x = self.cell_point.x - self.segment.start.x;
let point_vec_y = self.cell_point.y - self.segment.start.y;
let rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
let rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
// Save the last point.
let last_point = (*rv.points)[1];
let _ = rv.points.pop();
// Use stack to avoid recursion.
let mut point_stack = vec![projection_end];
let mut cur_x = projection_start;
let mut cur_y = Self::parabola_y(cur_x, rot_x, rot_y);
// Adjust max_dist parameter in the transformed space.
let max_dist_transformed = max_dist * max_dist * sqr_segment_length;
while !point_stack.is_empty() {
let new_x = point_stack[point_stack.len() - 1]; // was .top();
let new_y = Self::parabola_y(new_x, rot_x, rot_y);
// Compute coordinates of the point of the parabola that is
// furthest from the current line segment.
let mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
let mid_y = Self::parabola_y(mid_x, rot_x, rot_y);
// Compute maximum distance between the given parabolic arc
// and line segment that discretize it.
let mut dist = (new_y - cur_y) * (mid_x - cur_x) - (new_x - cur_x) * (mid_y - cur_y);
#[allow(clippy::suspicious_operation_groupings)]
{
dist = dist * dist
/ ((new_y - cur_y) * (new_y - cur_y) + (new_x - cur_x) * (new_x - cur_x));
}
if dist <= max_dist_transformed {
// Distance between parabola and line segment is less than max_dist.
let _ = point_stack.pop();
let inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) / sqr_segment_length
+ self.segment.start.x;
let inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) / sqr_segment_length
+ self.segment.start.y;
let z_comp = -Point2::new(inter_x, inter_y).distance(self.cell_point);
rv.points.push(Point3::new(inter_x, inter_y, z_comp));
cur_x = new_x;
cur_y = new_y;
} else {
point_stack.push(mid_x);
}
}
// Update last point.
let last_position = rv.points.len() - 1;
rv.points[last_position] = last_point;
rv
}
/// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
#[inline(always)]
#[allow(clippy::suspicious_operation_groupings)]
fn parabola_y(x: T, a: T, b: T) -> T {
((x - a) * (x - a) + b * b) / (b + b)
}
/// Get normalized length of the distance between:
/// 1) point projection onto the segment
/// 2) start point of the segment
/// Return this length divided by the segment length. This is made to avoid
/// sqrt computation during transformation from the initial space to the
/// transformed one and vice versa. The assumption is made that projection of
/// the point lies between the start-point and endpoint of the segment.
#[inline(always)]
fn point_projection(point: Point2<T>, segment: Line2<T>) -> T {
let segment_vec_x = segment.end.x - segment.start.x;
let segment_vec_y = segment.end.y - segment.start.y;
let point_vec_x = point.x - segment.start.x;
let point_vec_y = point.y - segment.start.y;
let sqr_segment_length = segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
let vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
vec_dot / sqr_segment_length
}
// exactly the same as get_point_projection but with a Point3 (Z component will be ignored)
fn point_projection_3d(point: &Point3<T>, segment: &Line2<T>) -> T {
let segment_vec_x = segment.end.x - segment.start.x;
let segment_vec_y = segment.end.y - segment.start.y;
let point_vec_x = point.x - segment.start.x;
let point_vec_y = point.y - segment.start.y;
let sqr_segment_length = segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
let vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
vec_dot / sqr_segment_length
}
}
/// A 2d line string, aka polyline.
/// If the 'connected' field is set the 'as_lines()' method will connect start point with the
/// end-point.
/// Todo: The builder structure of this struct needs to be revisited
#[derive(PartialEq, Eq, Clone, Hash, fmt::Debug)]
pub struct LineString2<T>
where
T: cgmath::BaseFloat + Sync,
{
pub(crate) points: Vec<Point2<T>>,
/// if connected is set the as_lines() method will add an extra line connecting
/// the first and last point
pub connected: bool,
}
impl<T> Default for LineString2<T>
where
T: cgmath::BaseFloat + Sync,
{
#[inline]
fn default() -> Self {
Self {
points: Vec::<Point2<T>>::new(),
connected: false,
}
}
}
struct PriorityDistance<T> {
key: T,
index: usize,
}
impl<T> PartialOrd for PriorityDistance<T>
where
T: PartialOrd + PartialEq + cgmath::UlpsEq,
{
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T> Ord for PriorityDistance<T>
where
T: PartialOrd + PartialEq + cgmath::UlpsEq,
{
#[inline(always)]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.key.partial_cmp(&other.key).unwrap().reverse()
}
}
impl<T> PartialEq for PriorityDistance<T>
where
T: PartialOrd + PartialEq + cgmath::UlpsEq,
{
#[inline(always)]
fn eq(&self, other: &Self) -> bool {
ulps_eq!(&self.key, &other.key)
}
}
impl<T> Eq for PriorityDistance<T> where T: PartialOrd + PartialEq + cgmath::UlpsEq {}
impl<T> LineString2<T>
where
T: cgmath::BaseFloat + Sync,
{
pub fn with_capacity(capacity: usize) -> Self {
Self {
points: Vec::<Point2<T>>::with_capacity(capacity),
connected: false,
}
}
pub fn with_points(mut self, points: Vec<Point2<T>>) -> Self {
self.points = points;
self
}
pub fn with_connected(mut self, connected: bool) -> Self {
self.connected = connected;
self
}
/// Copies the points of the iterator into the LineString2
/// from_iter is already claimed for into() objects.
pub fn with_iter<'a, I>(iter: I) -> Self
where
T: 'a,
I: Iterator<Item = &'a Point2<T>>,
{
Self {
points: iter.into_iter().copied().collect(),
connected: false,
}
}
/// Moves all the elements of `other` into `Self`, leaving `other` empty.
/// TODO: currently ignores if `other` is connected or not.
/// # Panics
/// Panics if the number of elements in the points vector overflows a `usize`.
pub fn append(&mut self, mut other: Self) {
self.points.append(&mut other.points);
}
/// Returns true if the lines are self intersecting
/// If number of points < 10 then the intersections are tested using brute force O(n²)
/// If more than that a sweep-line algorithm is used O(n*log(n)+i*log(n))
pub fn is_self_intersecting(&self) -> Result<bool, LinestringError> {
if self.points.len() <= 2 {
Ok(false)
} else if self.points.len() < 10 {
//let lines = self.as_lines_iter();
for l0 in self
.as_lines_iter()
.enumerate()
.take(self.as_lines_iter_len() - 1)
{
for l1 in self.as_lines_iter().enumerate().skip(l0.0 + 1) {
if l0.0 == l1.0 {
continue;
} else if l0.0 + 1 == l1.0 {
// consecutive line: l0.0.start <-> l0.0.end_point <-> l2.0.end_point
if Line2::intersection_point3(l0.1.start, l0.1.end, l1.1.end)?.is_some() {
return Ok(true);
}
} else if let Some(point) = l0.1.intersection_point(l1.1) {
let point = point.single();
if (point_ulps_eq(point, l0.1.start) || point_ulps_eq(point, l0.1.end))
&& (point_ulps_eq(point, l1.1.start) || point_ulps_eq(point, l1.1.end))
{
continue;
} else {
/*println!(
"intersection at {:?} {}:{:?}, {}:{:?}",
point, l0.0, l0.1, l1.0, l1.1
);*/
return Ok(true);
}
}
}
}
Ok(false)
} else {
let result = intersection::IntersectionData::<T>::default()
.with_ignore_end_point_intersections(true)?
.with_stop_at_first_intersection(true)?
.with_lines(self.as_lines_iter())?
.compute()?;
//print!("Lines rv={} [", result.is_empty());
//for p in self.as_lines().iter() {
//print!("[{:?},{:?}]-[{:?},{:?}],", p.start.x, p.start.y, p.end.x, p.end.y);
// print!("[{:?},{:?},{:?},{:?}],", p.start.x, p.start.y, p.end.x, p.end.y);
//print!("[{:?},{:?}],", p.x, p.y,);
//}
//println!("]");
Ok(result.len() > 0)
}
}
pub fn points(&self) -> &Vec<Point2<T>> {
&self.points
}
/// returns the number of points in the point list
/// not the number of segments (add one if connected)
pub fn len(&self) -> usize {
self.points.len()
}
/// returns true if the point list is empty
pub fn is_empty(&self) -> bool {
self.points.is_empty()
}
/// Returns the line string as a Vec of lines
/// Will be deprecated at some time, use self.as_lines_iter().collect() instead
#[inline(always)]
pub fn as_lines(&self) -> Vec<Line2<T>> {
self.as_lines_iter().collect()
}
/// Returns the line string as a iterator of lines
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub fn as_lines_iter<'a>(&'a self) -> Box<dyn Iterator<Item = Line2<T>> + 'a> {
if self.connected {
Box::new(
self.points
.iter()
.chain(self.points.first())
.tuple_windows::<(_, _)>()
.map(|(a, b)| Line2 { start: *a, end: *b }),
)
} else {
Box::new(
self.points
.iter()
.tuple_windows::<(_, _)>()
.map(|(a, b)| Line2 { start: *a, end: *b }),
)
}
}
/// The iterator of as_lines_iter() does not implement ExactSizeIterator.
/// This can be used as a work around for that problem
pub fn as_lines_iter_len(&self) -> usize {
if self.points.len() < 2 {
return 0;
}
if self.connected {
self.points.len()
} else {
self.points.len() - 1
}
}
/// Copy this linestring2 into a linestring3, populating the axes defined by 'plane'
/// An axis will always try to keep it's position (e.g. y goes to y if possible).
/// That way the operation is reversible (with regards to axis positions).
pub fn copy_to_3d(&self, plane: linestring_3d::Plane) -> linestring_3d::LineString3<T> {
let mut rv: linestring_3d::LineString3<T> = match plane {
linestring_3d::Plane::XY => self
.points
.iter()
.map(|p2d| Point3::new(p2d.x, p2d.y, T::zero()))
.collect(),
linestring_3d::Plane::XZ => self
.points
.iter()
.map(|p2d| Point3::new(p2d.x, T::zero(), p2d.y))
.collect(),
linestring_3d::Plane::YZ => self
.points
.iter()
.map(|p2d| Point3::new(T::zero(), p2d.x, p2d.y))
.collect(),
};
rv.connected = self.connected;
rv
}
pub fn push(&mut self, point: Point2<T>) {
self.points.push(point);
}
pub fn transform(&self, matrix3x3: &cgmath::Matrix3<T>) -> Self {
Self {
points: self
.points
.iter()
.map(|x| matrix3x3.transform_point(*x))
.collect(),
connected: self.connected,
}
}
/// Simplify using Ramer–Douglas–Peucker algorithm
pub fn simplify(&self, distance_predicate: T) -> Self {
//println!("input dist:{:?} slice{:?}", distance_predicate, self.points);
if self.points.len() <= 2 {
return self.clone();
}
if self.connected {
let mut points = self.points.clone();
// add the start-point to the end
points.push(*points.first().unwrap());
let mut rv: Vec<Point2<T>> = Vec::with_capacity(points.len());
// _simplify() always omits the the first point of the result, so we have to add that
rv.push(*points.first().unwrap());
rv.append(&mut Self::_simplify(
distance_predicate * distance_predicate,
points.as_slice(),
));
// remove the start-point from the the end
let _ = rv.remove(rv.len() - 1);
Self {
points: rv,
connected: true,
}
} else {
let mut rv: Vec<Point2<T>> = Vec::with_capacity(self.points.len());
// _simplify() always omits the the first point of the result, so we have to add that
rv.push(*self.points.first().unwrap());
rv.append(&mut Self::_simplify(
distance_predicate * distance_predicate,
self.points.as_slice(),
));
Self {
points: rv,
connected: false,
}
}
}
/// A naïve recursive implementation of Ramer–Douglas–Peucker algorithm
/// It spawns a lot of Vec, but it seems to work
fn _simplify(distance_predicate_sq: T, slice: &[Point2<T>]) -> Vec<Point2<T>> {
//println!("input dist:{:?} slice{:?}", distance_predicate_sq, slice);
if slice.len() <= 2 {
return slice[1..].to_vec();
}
// unwrap is safe since we tested len()>2
let start_point = *slice.first().unwrap();
let end_point = *slice.last().unwrap();
let mut max_dist_sq = (-T::one(), 0_usize);
let mut found_something = false;
// find the point with largest distance to start_point<->endpoint line
for (i, point) in slice.iter().enumerate().take(slice.len() - 1).skip(1) {
let sq_d = distance_to_line_squared_safe(start_point, end_point, *point);
//println!("sq_d:{:?}", sq_d);
if sq_d > max_dist_sq.0 && sq_d > distance_predicate_sq {
max_dist_sq = (sq_d, i);
found_something = true;
}
}
//println!("max_dist_sq: {:?}", max_dist_sq);
if !found_something {
// no point was outside the distance limit, return a new list only containing the
// end point (start point is implicit)
//println!("return start-end");
return vec![end_point];
}
let mut rv = Self::_simplify(distance_predicate_sq, &slice[..max_dist_sq.1 + 1]);
rv.append(&mut Self::_simplify(
distance_predicate_sq,
&slice[max_dist_sq.1..],
));
rv
}
/// Simplify using Visvalingam–Whyatt algorithm. This algorithm will delete 'points_to_delete'
/// of points from the polyline with the smallest area defined by one point and it's neighbours.
pub fn simplify_vw(&self, points_to_delete: usize) -> Self {
if (self.connected && self.points.len() <= 1) || (!self.connected && self.points.len() <= 2)
{
// Nothing to do here, we can't delete endpoints if not connected,
// and we must leave at least one point if connected.
return self.clone();
}
// priority queue key: area, value: indices of self.points + a copy of area.
// When a point is removed it's previously calculated area-to-neighbour value will not be
// removed. Instead new areas will simply be added to the priority queue.
// If a removed node is pop():ed it will be checked against the link_tree hash map.
// If it is not in there or if the area doesn't match it will simply be ignored and a
// new value pop():ed.
let mut search_tree = collections::binary_heap::BinaryHeap::<PriorityDistance<T>>::new();
// map from node number to remaining neighbours of that node. All indices of self.points
// AHashMap::<node_id:usize, (prev_node_id:usize, next_node_id:usize, area:T)>
let mut link_tree = ahash::AHashMap::<usize, (usize, usize, T)>::default();
{
let mut iter_i = self.points.iter().enumerate();
let mut iter_j = self.points.iter().enumerate().skip(1);
// the k iterator will terminate before i & j, so the iter_i & iter_j unwrap()s are safe
for k in self.points.iter().enumerate().skip(2) {
let i = iter_i.next().unwrap();
let j = iter_j.next().unwrap();
// define the area between point i, j & k as search criteria
let area = Line2::triangle_area_squared_times_4(*i.1, *j.1, *k.1);
search_tree.push(PriorityDistance {
key: area,
index: j.0,
});
// point j is connected to point i and k
let _ = link_tree.insert(j.0, (i.0, k.0, area));
}
}
if self.connected {
// add an extra point at the end, faking the loop
let i = self.points.len() - 2;
let j = self.points.len() - 1;
let k = self.points.len();
let area = Line2::triangle_area_squared_times_4(
self.points[i],
self.points[j],
self.points[0],
);
search_tree.push(PriorityDistance {
key: area,
index: j,
});
let _ = link_tree.insert(j, (i, k, area));
}
let self_points_len = self.points.len();
let mut deleted_nodes: usize = 0;
loop {
if search_tree.is_empty() || deleted_nodes >= points_to_delete {
break;
}
if let Some(smallest) = search_tree.pop() {
if let Some(old_links) = link_tree.get(&smallest.index).copied() {
let area = old_links.2;
if smallest.key != area {
// we hit a lazily deleted node, try again
continue;
} else {
let _ = link_tree.remove(&smallest.index);
}
deleted_nodes += 1;
let prev = old_links.0;
let next = old_links.1;
let prev_prev: Option<usize> = link_tree.get(&prev).map(|link| link.0);
let next_next: Option<usize> = link_tree.get(&next).map(|link| link.1);
if let Some(next_next) = next_next {
if let Some(prev_prev) = prev_prev {
let area = Line2::triangle_area_squared_times_4(
self.points[prev],
self.points[next % self_points_len],
self.points[next_next % self_points_len],
);
search_tree.push(PriorityDistance {
key: area,
index: next,
});
let _ = link_tree.insert(next, (prev, next_next, area));
let area = Line2::triangle_area_squared_times_4(
self.points[prev_prev],
self.points[prev],
self.points[next % self_points_len],
);
search_tree.push(PriorityDistance {
key: area,
index: prev,
});
let _ = link_tree.insert(prev, (prev_prev, next, area));
continue;
}
}
if let Some(prev_prev) = prev_prev {
let area = Line2::triangle_area_squared_times_4(
self.points[prev_prev],
self.points[prev],
self.points[next % self_points_len],
);
search_tree.push(PriorityDistance {
key: area,
index: prev,
});
let _ = link_tree.insert(prev, (prev_prev, next, area));
continue;
};
if let Some(next_next) = next_next {
let area = Line2::triangle_area_squared_times_4(
self.points[prev],
self.points[next % self_points_len],
self.points[next_next % self_points_len],
);
search_tree.push(PriorityDistance {
key: area,
index: next,
});
let _ = link_tree.insert(next, (prev, next_next, area));
continue;
};
} else {
// we hit a lazily deleted node, try again
continue;
}
}
}
// Todo: we *know* the order of the points, remove sorted_unstable()
// we just don't know the first non-deleted point after start :/
if !self.connected {
[0_usize]
.iter()
.copied()
.chain(
link_tree
.keys()
.sorted_unstable()
.copied()
.chain([self.points.len() - 1].iter().copied()),
)
.map(|x| self.points[x])
.collect::<Self>()
.with_connected(false)
} else {
[0_usize]
.iter()
.copied()
.chain(link_tree.keys().sorted_unstable().copied())
.map(|x| self.points[x])
.collect::<Self>()
.with_connected(true)
}
}
pub fn operation<F>(&mut self, f: F)
where
F: Fn(T) -> T,
{
for v in self.points.iter_mut() {
v.x = f(v.x);
v.y = f(v.y);
}
}
}
impl<T> From<Aabb2<T>> for LineString2<T>
where
T: cgmath::BaseFloat + Sync,
{
/// creates a connected LineString2 from the outlines of the Aabb2
fn from(other: Aabb2<T>) -> Self {
if let Some(min_max) = other.min_max {
let points = vec![
min_max.0,
Point2 {
x: min_max.1.x,
y: min_max.0.y,
},
min_max.1,
Point2 {
x: min_max.0.x,
y: min_max.1.y,
},
];
Self {
points,
connected: true,
}
} else {
Self {
points: Vec::<Point2<T>>::new(),
connected: false,
}
}
}
}
impl<T, IC> FromIterator<IC> for LineString2<T>
where
T: cgmath::BaseFloat + Sync,
IC: Into<Point2<T>>,
{
fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self {
LineString2 {
points: iter.into_iter().map(|c| c.into()).collect(),
connected: false,
}
}
}
/// A set of 2d LineString, an aabb + convex_hull.
/// It also contains a list of aabb & convex_hulls of shapes this set has gobbled up.
/// This can be useful for separating out inner regions of the shape.
///
/// This struct is intended to contain related shapes. E.g. outlines of letters with holes
#[derive(PartialEq, Eq, Clone, Hash)]
pub struct LineStringSet2<T>
where
T: cgmath::BaseFloat + Sync,
{
set: Vec<LineString2<T>>,
aabb: Aabb2<T>,
convex_hull: Option<LineString2<T>>,
pub internals: Option<Vec<(Aabb2<T>, LineString2<T>)>>,
}
impl<T> Default for LineStringSet2<T>
where
T: cgmath::BaseFloat + Sync,
{
#[inline]
fn default() -> Self {
Self {
set: Vec::<LineString2<T>>::new(),
aabb: Aabb2::default(),
convex_hull: None,
internals: None,
}
}
}
impl<T: cgmath::BaseFloat + Sync> LineStringSet2<T> {
/// steal the content of 'other' leaving it empty
pub fn steal_from(other: &mut LineStringSet2<T>) -> Self {
//println!("stealing from other.aabb:{:?}", other.aabb);
let mut set = Vec::<LineString2<T>>::new();
set.append(&mut other.set);
Self {
set,
aabb: other.aabb,
convex_hull: other.convex_hull.take(),
internals: other.internals.take(),
}
}
pub fn set(&self) -> &Vec<LineString2<T>> {
&self.set
}
pub fn with_capacity(capacity: usize) -> Self {
Self {
set: Vec::<LineString2<T>>::with_capacity(capacity),
aabb: Aabb2::default(),
convex_hull: None,
internals: None,
}
}
pub fn get_internals(&self) -> Option<&Vec<(Aabb2<T>, LineString2<T>)>> {
self.internals.as_ref()
}
pub fn is_empty(&self) -> bool {
self.set.is_empty()
}
pub fn push(&mut self, ls: LineString2<T>) {
if !ls.is_empty() {
self.set.push(ls);
for ls in self.set.last().unwrap().points.iter() {
self.aabb.update_point(*ls);
}
}
}
/// returns the combined convex hull of all the shapes in self.set
pub fn get_convex_hull(&self) -> &Option<LineString2<T>> {
&self.convex_hull
}
/// calculates the combined convex hull of all the shapes in self.set
pub fn calculate_convex_hull(&mut self) -> &LineString2<T> {
self.convex_hull = Some(convex_hull::ConvexHull::graham_scan(
self.set.iter().flat_map(|x| x.points()),
));
self.convex_hull.as_ref().unwrap()
}
/// Returns the axis aligned bounding box of this set.
pub fn get_aabb(&self) -> Aabb2<T> {
self.aabb
}
/// Transform each individual component of this set using the transform matrix.
/// Return the result in a new object.
pub fn transform(&self, matrix3x3: &cgmath::Matrix3<T>) -> Self {
let internals = self.internals.as_ref().map(|internals| {
internals
.iter()
.map(|x| (x.0.transform(matrix3x3), x.1.transform(matrix3x3)))
.collect()
});
let convex_hull = self
.convex_hull
.as_ref()
.map(|convex_hull| convex_hull.transform(matrix3x3));
Self {
aabb: self.aabb.transform(matrix3x3),
set: self.set.iter().map(|x| x.transform(matrix3x3)).collect(),
convex_hull,
internals,
}
}
/// Copy this linestringset2 into a linestringset3, populating the axes defined by 'plane'
/// An axis will always try to keep it's position (e.g. y goes to y if possible).
/// That way the operation is reversible (with regards to axis positions).
/// The empty axis will be set to zero.
pub fn copy_to_3d(&self, plane: linestring_3d::Plane) -> linestring_3d::LineStringSet3<T> {
let mut rv = linestring_3d::LineStringSet3::with_capacity(self.set.len());
for ls in self.set.iter() {
rv.push(ls.copy_to_3d(plane));
}
rv
}
/// drains the 'other' container of all shapes and put them into 'self'
pub fn take_from(&mut self, mut other: Self) {
self.aabb.update_aabb(other.aabb);
self.set.append(&mut other.set);
}
/// drains the 'other' container of all shapes and put them into 'self'
/// The other container must be entirely 'inside' the convex hull of 'self'
/// The 'other' container must also contain valid 'internals' and 'convex_hull' fields
pub fn take_from_internal(&mut self, other: &mut Self) -> Result<(), LinestringError> {
// sanity check
if other.convex_hull.is_none() {
return Err(LinestringError::InvalidData(
"'other' did not contain a valid 'convex_hull' field".to_string(),
));
}
if self.aabb.get_low().is_none() {
//println!("self.aabb {:?}", self.aabb);
//println!("other.aabb {:?}", other.aabb);
return Err(LinestringError::InvalidData(
"'self' did not contain a valid 'aabb' field".to_string(),
));
}
if other.aabb.get_low().is_none() {
return Err(LinestringError::InvalidData(
"'other' did not contain a valid 'aabb' field".to_string(),
));
}
if !self.aabb.contains_aabb(other.aabb) {
//println!("self.aabb {:?}", self.aabb);
//println!("other.aabb {:?}", other.aabb);
return Err(LinestringError::InvalidData(
"The 'other.aabb' is not contained within 'self.aabb'".to_string(),
));
}
if self.internals.is_none() {
self.internals = Some(Vec::<(Aabb2<T>, LineString2<T>)>::new())
}
self.set.append(&mut other.set);
if let Some(ref mut other_internals) = other.internals {
// self.internals.unwrap is safe now
self.internals.as_mut().unwrap().append(other_internals);
}
self.internals
.as_mut()
.unwrap()
.push((other.aabb, other.convex_hull.take().unwrap()));
Ok(())
}
/// Iterate an operation over each coordinate in the contained objects.
/// Useful when you want to round the value of each contained coordinate.
pub fn operation<F: Fn(T) -> T>(&mut self, f: &F) {
for s in self.set.iter_mut() {
s.operation(f);
}
self.aabb.operation(f);
if let Some(ref mut convex_hull) = self.convex_hull {
convex_hull.operation(f);
}
if let Some(ref mut internals) = self.internals {
for i in internals.iter_mut() {
i.0.operation(f);
i.1.operation(f);
}
}
}
}
/// A simple 2d AABB
/// If min_max is none no data has not been assigned yet.
#[derive(PartialEq, Eq, Copy, Clone, Hash, fmt::Debug)]
pub struct Aabb2<T: cgmath::BaseFloat + Sync> {
min_max: Option<(Point2<T>, Point2<T>)>,
}
impl<T: cgmath::BaseFloat + Sync, IT: Copy + Into<Point2<T>>> From<[IT; 2]> for Aabb2<T> {
fn from(coordinate: [IT; 2]) -> Aabb2<T> {
let mut rv = Aabb2::<T>::default();
rv.update_point(coordinate[0].into());
rv.update_point(coordinate[1].into());
rv
}
}
impl<T: cgmath::BaseFloat + Sync> From<[T; 4]> for Aabb2<T> {
fn from(coordinate: [T; 4]) -> Aabb2<T> {
let mut rv = Aabb2::default();
rv.update_point(Point2 {
x: coordinate[0],
y: coordinate[1],
});
rv.update_point(Point2 {
x: coordinate[2],
y: coordinate[3],
});
rv
}
}
impl<T: cgmath::BaseFloat + Sync> Default for Aabb2<T> {
#[inline]
fn default() -> Self {
Self { min_max: None }
}
}
impl<T: cgmath::BaseFloat + Sync> Aabb2<T> {
pub fn new(point: Point2<T>) -> Self {
Self {
min_max: Some((point, point)),
}
}
pub fn update_aabb(&mut self, aabb: Aabb2<T>) {
if let Some((min, max)) = aabb.min_max {
self.update_point(min);
self.update_point(max);
}
}
pub fn update_point(&mut self, point: Point2<T>) {
if self.min_max.is_none() {
self.min_max = Some((point, point));
return;
}
let (mut aabb_min, mut aabb_max) = self.min_max.take().unwrap();
if point.x < aabb_min.x {
aabb_min.x = point.x;
}
if point.y < aabb_min.y {
aabb_min.y = point.y;
}
if point.x > aabb_max.x {
aabb_max.x = point.x;
}
if point.y > aabb_max.y {
aabb_max.y = point.y;
}
self.min_max = Some((aabb_min, aabb_max));
}
pub fn get_high(&self) -> Option<Point2<T>> {
if let Some((_, _high)) = self.min_max {
return Some(_high);
}
None
}
pub fn get_low(&self) -> Option<Point2<T>> {
if let Some((_low, _)) = self.min_max {
return Some(_low);
}
None
}
pub fn transform(&self, matrix3x3: &cgmath::Matrix3<T>) -> Self {
if let Some(min_max) = self.min_max {
Self {
min_max: Some((
matrix3x3.transform_point(min_max.0),
matrix3x3.transform_point(min_max.1),
)),
}
} else {
Self { min_max: None }
}
}
/// returns true if this aabb entirely contains/engulfs 'other' (inclusive)
#[inline(always)]
pub fn contains_aabb(&self, other: Aabb2<T>) -> bool {
if let Some(self_aabb) = self.min_max {
if let Some(other_aabb) = other.min_max {
return Self::contains_point_inclusive_(self_aabb, other_aabb.0)
&& Self::contains_point_inclusive_(self_aabb, other_aabb.1);
}
}
false
}
/// returns true if this aabb entirely contains/engulfs a line (inclusive)
#[inline(always)]
pub fn contains_line_inclusive(&self, line: &Line2<T>) -> bool {
if let Some(self_aabb) = self.min_max {
return Self::contains_point_inclusive_(self_aabb, line.start)
&& Self::contains_point_inclusive_(self_aabb, line.end);
}
false
}
/// returns true if this aabb contains a point (inclusive)
#[inline(always)]
pub fn contains_point_inclusive(&self, point: Point2<T>) -> bool {
if let Some(self_aabb) = self.min_max {
return Self::contains_point_inclusive_(self_aabb, point);
}
false
}
/// returns true if aabb contains a point (inclusive)
#[inline(always)]
fn contains_point_inclusive_(aabb: (Point2<T>, Point2<T>), point: Point2<T>) -> bool {
(aabb.0.x <= point.x || ulps_eq!(&aabb.0.x, &point.x))
&& (aabb.0.y <= point.y || ulps_eq!(&aabb.0.y, &point.y))
&& (aabb.1.x >= point.x || ulps_eq!(&aabb.1.x, &point.x))
&& (aabb.1.y >= point.y || ulps_eq!(&aabb.1.y, &point.y))
}
pub fn operation<F>(&mut self, f: F)
where
F: Fn(T) -> T,
{
if let Some(ref mut min_max) = self.min_max {
min_max.0.x = f(min_max.0.x);
min_max.0.y = f(min_max.0.y);
min_max.1.x = f(min_max.1.x);
min_max.1.y = f(min_max.1.y);
}
}
}
/// Get any intersection point between line segment and point.
/// Inspired by <https://stackoverflow.com/a/17590923>
pub fn intersect_line_point<T: cgmath::BaseFloat + Sync>(
line: Line2<T>,
point: Point2<T>,
) -> Option<Intersection<T>> {
// take care of end point equality
if ulps_eq!(line.start.x, point.x) && ulps_eq!(line.start.y, point.y) {
return Some(Intersection::Intersection(point));
}
if ulps_eq!(line.end.x, point.x) && ulps_eq!(line.end.y, point.y) {
return Some(Intersection::Intersection(point));
}
let l0x = line.start.x;
let l1x = line.end.x;
let l0y = line.start.y;
let l1y = line.end.y;
let px = point.x;
let py = point.y;
let ab = ((l1x - l0x) * (l1x - l0x) + (l1y - l0y) * (l1y - l0y)).sqrt();
let ap = ((px - l0x) * (px - l0x) + (py - l0y) * (py - l0y)).sqrt();
let pb = ((l1x - px) * (l1x - px) + (l1y - py) * (l1y - py)).sqrt();
#[cfg(feature = "console_trace")]
println!("ab={:?}, ap={:?}, pb={:?}, ap+pb={:?}", ab, ap, pb, ap + pb);
if ulps_eq!(&ab, &(ap + pb)) {
return Some(Intersection::Intersection(point));
}
None
}
#[allow(dead_code)]
pub enum Intersection<T: cgmath::BaseFloat + Sync> {
// Normal one point intersection
Intersection(Point2<T>),
// Collinear overlapping
OverLap(Line2<T>),
}
impl<T: cgmath::BaseFloat + Sync> Intersection<T> {
/// return a single, simple intersection point
pub fn single(&self) -> Point2<T> {
match self {
Self::OverLap(a) => a.start,
Self::Intersection(a) => *a,
}
}
}
impl<T: cgmath::BaseFloat + Sync> fmt::Debug for Intersection<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::OverLap(a) => a.fmt(f),
Self::Intersection(a) => a.fmt(f),
}
}
}
#[inline(always)]
pub fn scale_to_coordinate<T: cgmath::BaseFloat + Sync>(
point: Point2<T>,
vector: Vector2<T>,
scale: T,
) -> Point2<T> {
Point2::new(point.x + scale * vector.x, point.y + scale * vector.y)
}
#[inline(always)]
/// from <https://stackoverflow.com/a/565282> :
/// "Define the 2-dimensional vector cross product v × w to be vx wy − vy wx."
/// This function returns the z component of v × w (if we pretend v and w are two dimensional)
fn cross_z<T: cgmath::BaseFloat + Sync>(v: Vector2<T>, w: Vector2<T>) -> T {
v.x * w.y - v.y * w.x
}
#[inline(always)]
#[allow(clippy::suspicious_operation_groupings)]
/// The distance between the line a->b to the point p is the same as
/// distance = |(a-p)×(a-b)|/|a-b|
/// <https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Another_vector_formulation>
/// Make sure to *not* call this function with a-b==0
/// This function returns the distance²
pub fn distance_to_line_squared<T>(l0: Point2<T>, l1: Point2<T>, p: Point2<T>) -> T
where
T: cgmath::BaseFloat + Sync,
{
let l0_sub_l1 = l0 - l1;
let l0_sub_p = l0 - p;
let dot = (l0_sub_l1.x * l0_sub_p.x + l0_sub_l1.y * l0_sub_p.y)
/ (l0_sub_l1.x * l0_sub_l1.x + l0_sub_l1.y * l0_sub_l1.y);
if dot < T::zero() {
l0_sub_p.x * l0_sub_p.x + l0_sub_p.y * l0_sub_p.y
} else if dot > T::one() {
let b_sub_p = l1 - p;
b_sub_p.x * b_sub_p.x + b_sub_p.y * b_sub_p.y
} else {
let a_sub_p_cross_a_sub_b = cross_z(l0_sub_p, l0_sub_l1);
(a_sub_p_cross_a_sub_b * a_sub_p_cross_a_sub_b)
/ (l0_sub_l1.x * l0_sub_l1.x + l0_sub_l1.y * l0_sub_l1.y)
}
}
/// Same as distance_to_line_squared<T> but it can be called when a-b might be 0.
/// It's a little slower because it does the a==b test
#[inline(always)]
pub fn distance_to_line_squared_safe<T: cgmath::BaseFloat + Sync>(
l0: Point2<T>,
l1: Point2<T>,
p: Point2<T>,
) -> T {
if point_ulps_eq(l0, l1) {
// give the point-to-point answer if the segment is a point
l0.distance2(p)
} else {
distance_to_line_squared(l0, l1, p)
}
}
#[inline(always)]
pub fn point_ulps_eq<T: cgmath::BaseFloat + Sync>(a: Point2<T>, b: Point2<T>) -> bool {
ulps_eq!(a.x, b.x) && ulps_eq!(a.y, b.y)
}
/// This is a simple but efficient affine transformation object.
/// It can pan, zoom and flip points around center axis but not rotate.
/// It does not handle vector transformation, only points.
#[derive(PartialEq, Clone, fmt::Debug)]
pub struct SimpleAffine<T: cgmath::BaseFloat + Sync> {
/// The offsets used to center the 'source' coordinate system. Typically the input geometry
/// in this case.
pub a_offset: [T; 2],
/// A zoom scale
pub scale: [T; 2],
/// The offsets needed to center coordinates of interest on the 'dest' coordinate system.
/// i.e. the screen coordinate system.
pub b_offset: [T; 2],
}
impl<T: cgmath::BaseFloat + Sync> Default for SimpleAffine<T> {
#[inline]
fn default() -> Self {
Self {
a_offset: [T::zero(), T::zero()],
scale: [T::one(), T::one()],
b_offset: [T::zero(), T::zero()],
}
}
}
impl<T: cgmath::BaseFloat + Sync + num_traits::cast::NumCast> SimpleAffine<T> {
pub fn new(a_aabb: &Aabb2<T>, b_aabb: &Aabb2<T>) -> Result<Self, LinestringError> {
let min_dim = T::from(1.0).unwrap();
let two = T::from(2.0).unwrap();
if let Some(source_low) = a_aabb.get_low() {
if let Some(source_high) = a_aabb.get_high() {
if let Some(destination_low) = b_aabb.get_low() {
if let Some(destination_high) = b_aabb.get_high() {
let source_aabb_center = [
-(source_low[0] + source_high[0]) / two,
-(source_low[1] + source_high[1]) / two,
];
let source_aabb_size = [
(source_high[0] - source_low[0]).max(min_dim),
(source_high[1] - source_low[1]).max(min_dim),
];
let dest_aabb_center = [
(destination_low[0] + destination_high[0]) / two,
(destination_low[1] + destination_high[1]) / two,
];
let dest_aabb_size = [
(destination_high[0] - destination_low[0]).max(min_dim),
(destination_high[1] - destination_low[1]).max(min_dim),
];
// make sure the larges dimension of source fits inside smallest of dest
let source_aabb_size = source_aabb_size[0].max(source_aabb_size[1]);
let dest_aabb_size = dest_aabb_size[0].min(dest_aabb_size[1]);
let scale = dest_aabb_size / source_aabb_size;
return Ok(Self {
a_offset: source_aabb_center,
scale: [scale, scale],
b_offset: dest_aabb_center,
});
}
}
}
}
Err(LinestringError::AabbError(
"could not get dimension of the AABB".to_string(),
))
}
/// transform from dest (b) coordinate system to source (a) coordinate system
///```
/// # use linestring::linestring_2d;
/// # use cgmath::Point2;
/// type T = f32;
///
/// // source is (-100,-100)-(100,100)
/// let mut aabb_source = linestring_2d::Aabb2::<T>::from([-100.,-100.,100.,100.]);
/// // dest is (0,0)-(800,800.)
/// let mut aabb_dest = linestring_2d::Aabb2::<T>::from([0.,0.,800.,800.]);
/// let transform = linestring_2d::SimpleAffine::new(&aabb_source, &aabb_dest)?;
///
/// assert_eq!(
/// transform.transform_ab(Point2{x:-100., y:-100.}).unwrap(),
/// Point2{x:0., y:0.}
/// );
/// assert_eq!(
/// transform.transform_ba(Point2{x:0., y:0.}).unwrap(),
/// Point2{x:-100., y:-100.}
/// );
/// assert_eq!(
/// transform.transform_ab(Point2{x:100., y:100.}).unwrap(),
/// Point2{x:800., y:800.}
/// );
/// assert_eq!(
/// transform.transform_ba(Point2{x:800., y:800.}).unwrap(),
/// Point2{x:100., y:100.}
/// );
/// # Ok::<(),linestring::LinestringError>(())
///```
#[inline(always)]
pub fn transform_ba(&self, point: Point2<T>) -> Result<Point2<T>, LinestringError> {
let x = (point.x - self.b_offset[0]) / self.scale[0] - self.a_offset[0];
let y = (point.y - self.b_offset[1]) / self.scale[1] - self.a_offset[1];
if x.is_finite() && y.is_finite() {
Ok(Point2 { x, y })
} else {
Err(LinestringError::TransformError(
"Transformation out of bounds".to_string(),
))
}
}
/// Transform from source (a) coordinate system to dest (b) coordinate system
///```
/// # use linestring::linestring_2d;
/// # use cgmath::Point2;
/// type T = f32;
/// // source is (0,0)-(1,1)
/// let mut aabb_source = linestring_2d::Aabb2::<T>::from([0.,0.,1.,1.]);
/// // dest is (1,1)-(2,2)
/// let mut aabb_dest = linestring_2d::Aabb2::<T>::from([1.,1.,2.,2.]);
///
/// let transform = linestring_2d::SimpleAffine::new(&aabb_source, &aabb_dest)?;
/// assert_eq!(
/// transform.transform_ab(Point2{x:0., y:0.})?,
/// Point2{x:1., y:1.}
/// );
/// assert_eq!(
/// transform.transform_ab(Point2{x:1., y:1.})?,
/// Point2{x:2., y:2.}
/// );
/// assert_eq!(
/// transform.transform_ab(Point2{x:0., y:1.})?,
/// Point2{x:1., y:2.}
/// );
/// assert_eq!(
/// transform.transform_ab(Point2{x:1., y:0.})?,
/// Point2{x:2., y:1.}
/// );
/// # Ok::<(),linestring::LinestringError>(())
///```
#[inline(always)]
pub fn transform_ab(&self, point: Point2<T>) -> Result<Point2<T>, LinestringError> {
let x = (point.x + self.a_offset[0]) * self.scale[0] + self.b_offset[0];
let y = (point.y + self.a_offset[1]) * self.scale[1] + self.b_offset[1];
if x.is_finite() && y.is_finite() {
Ok(Point2 { x, y })
} else {
Err(LinestringError::TransformError(
"Transformation out of bounds".to_string(),
))
}
}
/// transform an array from dest (b) coordinate system to source (a) coordinate system
#[inline(always)]
pub fn transform_ba_a(&self, points: [T; 4]) -> Result<[T; 4], LinestringError> {
let x1 = (points[0] - self.b_offset[0]) / self.scale[0] - self.a_offset[0];
let y1 = (points[1] - self.b_offset[1]) / self.scale[1] - self.a_offset[1];
let x2 = (points[2] - self.b_offset[0]) / self.scale[0] - self.a_offset[0];
let y2 = (points[3] - self.b_offset[1]) / self.scale[1] - self.a_offset[1];
if x1.is_finite() && y1.is_finite() && x2.is_finite() && y2.is_finite() {
Ok([x1, y1, x2, y2])
} else {
Err(LinestringError::TransformError(
"Transformation out of bounds".to_string(),
))
}
}
/// transform an array from source (a) coordinate system to dest (b) coordinate system
#[inline(always)]
pub fn transform_ab_a(&self, points: [T; 4]) -> Result<[T; 4], LinestringError> {
let x1 = (points[0] + self.a_offset[0]) * self.scale[0] + self.b_offset[0];
let y1 = (points[1] + self.a_offset[1]) * self.scale[1] + self.b_offset[1];
let x2 = (points[2] + self.a_offset[0]) * self.scale[0] + self.b_offset[0];
let y2 = (points[3] + self.a_offset[1]) * self.scale[1] + self.b_offset[1];
if x1.is_finite() && y1.is_finite() && x2.is_finite() && y2.is_finite() {
Ok([x1, y1, x2, y2])
} else {
Err(LinestringError::TransformError(
"Transformation out of bounds".to_string(),
))
}
}
}