1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Logic to connect off-chain channel management with on-chain transaction monitoring.
//!
//! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
//! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
//! make those available as [`MonitorEvent`]s to be consumed.
//!
//! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
//! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
//! clients, such that transactions spending those outputs are included in block data.
//!
//! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
//! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
//! would be responsible for routing each update to a remote server and for retrieving monitor
//! events. The remote server would make use of [`ChainMonitor`] for block processing and for
//! servicing [`ChannelMonitor`] updates from the client.

use bitcoin::blockdata::block::{Block, BlockHeader};
use bitcoin::hash_types::Txid;

use chain;
use chain::{Filter, WatchedOutput};
use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
use chain::channelmonitor;
use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateErr, MonitorEvent, Persist, TransactionOutputs};
use chain::transaction::{OutPoint, TransactionData};
use chain::keysinterface::Sign;
use util::logger::Logger;
use util::events;
use util::events::Event;

use std::collections::{HashMap, hash_map};
use std::sync::RwLock;
use std::ops::Deref;

/// An implementation of [`chain::Watch`] for monitoring channels.
///
/// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
/// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
/// or used independently to monitor channels remotely. See the [module-level documentation] for
/// details.
///
/// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
/// [module-level documentation]: crate::chain::chainmonitor
pub struct ChainMonitor<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
	where C::Target: chain::Filter,
        T::Target: BroadcasterInterface,
        F::Target: FeeEstimator,
        L::Target: Logger,
        P::Target: channelmonitor::Persist<ChannelSigner>,
{
	/// The monitors
	pub monitors: RwLock<HashMap<OutPoint, ChannelMonitor<ChannelSigner>>>,
	chain_source: Option<C>,
	broadcaster: T,
	logger: L,
	fee_estimator: F,
	persister: P,
}

impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
where C::Target: chain::Filter,
	    T::Target: BroadcasterInterface,
	    F::Target: FeeEstimator,
	    L::Target: Logger,
	    P::Target: channelmonitor::Persist<ChannelSigner>,
{
	/// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
	/// of a channel and reacting accordingly based on transactions in the given chain data. See
	/// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
	/// be returned by [`chain::Watch::release_pending_monitor_events`].
	///
	/// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
	/// calls must not exclude any transactions matching the new outputs nor any in-block
	/// descendants of such transactions. It is not necessary to re-fetch the block to obtain
	/// updated `txdata`.
	fn process_chain_data<FN>(&self, header: &BlockHeader, txdata: &TransactionData, process: FN)
	where
		FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
	{
		let mut dependent_txdata = Vec::new();
		let monitors = self.monitors.read().unwrap();
		for monitor in monitors.values() {
			let mut txn_outputs = process(monitor, txdata);

			// Register any new outputs with the chain source for filtering, storing any dependent
			// transactions from within the block that previously had not been included in txdata.
			if let Some(ref chain_source) = self.chain_source {
				let block_hash = header.block_hash();
				for (txid, mut outputs) in txn_outputs.drain(..) {
					for (idx, output) in outputs.drain(..) {
						// Register any new outputs with the chain source for filtering and recurse
						// if it indicates that there are dependent transactions within the block
						// that had not been previously included in txdata.
						let output = WatchedOutput {
							block_hash: Some(block_hash),
							outpoint: OutPoint { txid, index: idx as u16 },
							script_pubkey: output.script_pubkey,
						};
						if let Some(tx) = chain_source.register_output(output) {
							dependent_txdata.push(tx);
						}
					}
				}
			}
		}

		// Recursively call for any dependent transactions that were identified by the chain source.
		if !dependent_txdata.is_empty() {
			dependent_txdata.sort_unstable_by_key(|(index, _tx)| *index);
			dependent_txdata.dedup_by_key(|(index, _tx)| *index);
			let txdata: Vec<_> = dependent_txdata.iter().map(|(index, tx)| (*index, tx)).collect();
			self.process_chain_data(header, &txdata, process);
		}
	}

	/// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
	///
	/// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
	/// will call back to it indicating transactions and outputs of interest. This allows clients to
	/// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
	/// always need to fetch full blocks absent another means for determining which blocks contain
	/// transactions relevant to the watched channels.
	pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
		Self {
			monitors: RwLock::new(HashMap::new()),
			chain_source,
			broadcaster,
			logger,
			fee_estimator: feeest,
			persister,
		}
	}
}

impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
where
	C::Target: chain::Filter,
	T::Target: BroadcasterInterface,
	F::Target: FeeEstimator,
	L::Target: Logger,
	P::Target: channelmonitor::Persist<ChannelSigner>,
{
	fn block_connected(&self, block: &Block, height: u32) {
		let header = &block.header;
		let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
		self.process_chain_data(header, &txdata, |monitor, txdata| {
			monitor.block_connected(
				header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
		});
	}

	fn block_disconnected(&self, header: &BlockHeader, height: u32) {
		let monitors = self.monitors.read().unwrap();
		for monitor in monitors.values() {
			monitor.block_disconnected(
				header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
		}
	}
}

impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
where
	C::Target: chain::Filter,
	T::Target: BroadcasterInterface,
	F::Target: FeeEstimator,
	L::Target: Logger,
	P::Target: channelmonitor::Persist<ChannelSigner>,
{
	fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
		self.process_chain_data(header, txdata, |monitor, txdata| {
			monitor.transactions_confirmed(
				header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
		});
	}

	fn transaction_unconfirmed(&self, txid: &Txid) {
		let monitors = self.monitors.read().unwrap();
		for monitor in monitors.values() {
			monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
		}
	}

	fn best_block_updated(&self, header: &BlockHeader, height: u32) {
		self.process_chain_data(header, &[], |monitor, txdata| {
			// While in practice there shouldn't be any recursive calls when given empty txdata,
			// it's still possible if a chain::Filter implementation returns a transaction.
			debug_assert!(txdata.is_empty());
			monitor.best_block_updated(
				header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
		});
	}

	fn get_relevant_txids(&self) -> Vec<Txid> {
		let mut txids = Vec::new();
		let monitors = self.monitors.read().unwrap();
		for monitor in monitors.values() {
			txids.append(&mut monitor.get_relevant_txids());
		}

		txids.sort_unstable();
		txids.dedup();
		txids
	}
}

impl<ChannelSigner: Sign, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
where C::Target: chain::Filter,
	    T::Target: BroadcasterInterface,
	    F::Target: FeeEstimator,
	    L::Target: Logger,
	    P::Target: channelmonitor::Persist<ChannelSigner>,
{
	/// Adds the monitor that watches the channel referred to by the given outpoint.
	///
	/// Calls back to [`chain::Filter`] with the funding transaction and outputs to watch.
	///
	/// Note that we persist the given `ChannelMonitor` while holding the `ChainMonitor`
	/// monitors lock.
	fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr> {
		let mut monitors = self.monitors.write().unwrap();
		let entry = match monitors.entry(funding_outpoint) {
			hash_map::Entry::Occupied(_) => {
				log_error!(self.logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
				return Err(ChannelMonitorUpdateErr::PermanentFailure)},
			hash_map::Entry::Vacant(e) => e,
		};
		if let Err(e) = self.persister.persist_new_channel(funding_outpoint, &monitor) {
			log_error!(self.logger, "Failed to persist new channel data");
			return Err(e);
		}
		{
			let funding_txo = monitor.get_funding_txo();
			log_trace!(self.logger, "Got new Channel Monitor for channel {}", log_bytes!(funding_txo.0.to_channel_id()[..]));

			if let Some(ref chain_source) = self.chain_source {
				monitor.load_outputs_to_watch(chain_source);
			}
		}
		entry.insert(monitor);
		Ok(())
	}

	/// Note that we persist the given `ChannelMonitor` update while holding the
	/// `ChainMonitor` monitors lock.
	fn update_channel(&self, funding_txo: OutPoint, update: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr> {
		// Update the monitor that watches the channel referred to by the given outpoint.
		let monitors = self.monitors.read().unwrap();
		match monitors.get(&funding_txo) {
			None => {
				log_error!(self.logger, "Failed to update channel monitor: no such monitor registered");

				// We should never ever trigger this from within ChannelManager. Technically a
				// user could use this object with some proxying in between which makes this
				// possible, but in tests and fuzzing, this should be a panic.
				#[cfg(any(test, feature = "fuzztarget"))]
				panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
				#[cfg(not(any(test, feature = "fuzztarget")))]
				Err(ChannelMonitorUpdateErr::PermanentFailure)
			},
			Some(monitor) => {
				log_trace!(self.logger, "Updating Channel Monitor for channel {}", log_funding_info!(monitor));
				let update_res = monitor.update_monitor(&update, &self.broadcaster, &self.fee_estimator, &self.logger);
				if let Err(e) = &update_res {
					log_error!(self.logger, "Failed to update channel monitor: {:?}", e);
				}
				// Even if updating the monitor returns an error, the monitor's state will
				// still be changed. So, persist the updated monitor despite the error.
				let persist_res = self.persister.update_persisted_channel(funding_txo, &update, monitor);
				if let Err(ref e) = persist_res {
					log_error!(self.logger, "Failed to persist channel monitor update: {:?}", e);
				}
				if update_res.is_err() {
					Err(ChannelMonitorUpdateErr::PermanentFailure)
				} else {
					persist_res
				}
			}
		}
	}

	fn release_pending_monitor_events(&self) -> Vec<MonitorEvent> {
		let mut pending_monitor_events = Vec::new();
		for monitor in self.monitors.read().unwrap().values() {
			pending_monitor_events.append(&mut monitor.get_and_clear_pending_monitor_events());
		}
		pending_monitor_events
	}
}

impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
	where C::Target: chain::Filter,
	      T::Target: BroadcasterInterface,
	      F::Target: FeeEstimator,
	      L::Target: Logger,
	      P::Target: channelmonitor::Persist<ChannelSigner>,
{
	fn get_and_clear_pending_events(&self) -> Vec<Event> {
		let mut pending_events = Vec::new();
		for monitor in self.monitors.read().unwrap().values() {
			pending_events.append(&mut monitor.get_and_clear_pending_events());
		}
		pending_events
	}
}

#[cfg(test)]
mod tests {
	use ::{check_added_monitors, get_local_commitment_txn};
	use ln::features::InitFeatures;
	use ln::functional_test_utils::*;
	use util::events::EventsProvider;
	use util::events::MessageSendEventsProvider;
	use util::test_utils::{OnRegisterOutput, TxOutReference};

	/// Tests that in-block dependent transactions are processed by `block_connected` when not
	/// included in `txdata` but returned by [`chain::Filter::register_output`]. For instance,
	/// a (non-anchor) commitment transaction's HTLC output may be spent in the same block as the
	/// commitment transaction itself. An Electrum client may filter the commitment transaction but
	/// needs to return the HTLC transaction so it can be processed.
	#[test]
	fn connect_block_checks_dependent_transactions() {
		let chanmon_cfgs = create_chanmon_cfgs(2);
		let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
		let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
		let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
		let channel = create_announced_chan_between_nodes(
			&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());

		// Send a payment, saving nodes[0]'s revoked commitment and HTLC-Timeout transactions.
		let (commitment_tx, htlc_tx) = {
			let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 5_000_000).0;
			let mut txn = get_local_commitment_txn!(nodes[0], channel.2);
			claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage);

			assert_eq!(txn.len(), 2);
			(txn.remove(0), txn.remove(0))
		};

		// Set expectations on nodes[1]'s chain source to return dependent transactions.
		let htlc_output = TxOutReference(commitment_tx.clone(), 0);
		let to_local_output = TxOutReference(commitment_tx.clone(), 1);
		let htlc_timeout_output = TxOutReference(htlc_tx.clone(), 0);
		nodes[1].chain_source
			.expect(OnRegisterOutput { with: htlc_output, returns: Some((1, htlc_tx)) })
			.expect(OnRegisterOutput { with: to_local_output, returns: None })
			.expect(OnRegisterOutput { with: htlc_timeout_output, returns: None });

		// Notify nodes[1] that nodes[0]'s revoked commitment transaction was mined. The chain
		// source should return the dependent HTLC transaction when the HTLC output is registered.
		mine_transaction(&nodes[1], &commitment_tx);

		// Clean up so uninteresting assertions don't fail.
		check_added_monitors!(nodes[1], 1);
		nodes[1].node.get_and_clear_pending_msg_events();
		nodes[1].node.get_and_clear_pending_events();
	}
}