#include <stdlib.h>
#include <string.h>
#include "zipint.h"
#ifndef WRITE_FRAGMENT_SIZE
#define WRITE_FRAGMENT_SIZE (64 * 1024)
#endif
struct buffer {
zip_buffer_fragment_t *fragments;
zip_uint64_t *fragment_offsets;
zip_uint64_t nfragments;
zip_uint64_t fragments_capacity;
zip_uint64_t first_owned_fragment;
zip_uint64_t shared_fragments;
struct buffer *shared_buffer;
zip_uint64_t size;
zip_uint64_t offset;
zip_uint64_t current_fragment;
};
typedef struct buffer buffer_t;
struct read_data {
zip_error_t error;
time_t mtime;
buffer_t *in;
buffer_t *out;
};
#define buffer_capacity(buffer) ((buffer)->fragment_offsets[(buffer)->nfragments])
#define buffer_size(buffer) ((buffer)->size)
static buffer_t *buffer_clone(buffer_t *buffer, zip_uint64_t length, zip_error_t *error);
static zip_uint64_t buffer_find_fragment(const buffer_t *buffer, zip_uint64_t offset);
static void buffer_free(buffer_t *buffer);
static bool buffer_grow_fragments(buffer_t *buffer, zip_uint64_t capacity, zip_error_t *error);
static buffer_t *buffer_new(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int free_data, zip_error_t *error);
static zip_int64_t buffer_read(buffer_t *buffer, zip_uint8_t *data, zip_uint64_t length);
static int buffer_seek(buffer_t *buffer, void *data, zip_uint64_t len, zip_error_t *error);
static zip_int64_t buffer_write(buffer_t *buffer, const zip_uint8_t *data, zip_uint64_t length, zip_error_t *);
static zip_int64_t read_data(void *, void *, zip_uint64_t, zip_source_cmd_t);
ZIP_EXTERN zip_source_t *
zip_source_buffer(zip_t *za, const void *data, zip_uint64_t len, int freep) {
if (za == NULL)
return NULL;
return zip_source_buffer_create(data, len, freep, &za->error);
}
ZIP_EXTERN zip_source_t *
zip_source_buffer_create(const void *data, zip_uint64_t len, int freep, zip_error_t *error) {
zip_buffer_fragment_t fragment;
if (data == NULL && len > 0) {
zip_error_set(error, ZIP_ER_INVAL, 0);
return NULL;
}
fragment.data = (zip_uint8_t *)data;
fragment.length = len;
return zip_source_buffer_fragment_create(&fragment, 1, freep, error);
}
ZIP_EXTERN zip_source_t *
zip_source_buffer_fragment(zip_t *za, const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int freep) {
if (za == NULL) {
return NULL;
}
return zip_source_buffer_fragment_create(fragments, nfragments, freep, &za->error);
}
ZIP_EXTERN zip_source_t *
zip_source_buffer_fragment_create(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int freep, zip_error_t *error) {
struct read_data *ctx;
zip_source_t *zs;
buffer_t *buffer;
if (fragments == NULL && nfragments > 0) {
zip_error_set(error, ZIP_ER_INVAL, 0);
return NULL;
}
if ((buffer = buffer_new(fragments, nfragments, freep, error)) == NULL) {
return NULL;
}
if ((ctx = (struct read_data *)malloc(sizeof(*ctx))) == NULL) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
buffer_free(buffer);
return NULL;
}
ctx->in = buffer;
ctx->out = NULL;
ctx->mtime = time(NULL);
zip_error_init(&ctx->error);
if ((zs = zip_source_function_create(read_data, ctx, error)) == NULL) {
buffer_free(ctx->in);
free(ctx);
return NULL;
}
return zs;
}
static zip_int64_t
read_data(void *state, void *data, zip_uint64_t len, zip_source_cmd_t cmd) {
struct read_data *ctx = (struct read_data *)state;
switch (cmd) {
case ZIP_SOURCE_BEGIN_WRITE:
if ((ctx->out = buffer_new(NULL, 0, 0, &ctx->error)) == NULL) {
return -1;
}
ctx->out->offset = 0;
ctx->out->current_fragment = 0;
return 0;
case ZIP_SOURCE_BEGIN_WRITE_CLONING:
if ((ctx->out = buffer_clone(ctx->in, len, &ctx->error)) == NULL) {
return -1;
}
ctx->out->offset = len;
ctx->out->current_fragment = ctx->out->nfragments;
return 0;
case ZIP_SOURCE_CLOSE:
return 0;
case ZIP_SOURCE_COMMIT_WRITE:
buffer_free(ctx->in);
ctx->in = ctx->out;
ctx->out = NULL;
return 0;
case ZIP_SOURCE_ERROR:
return zip_error_to_data(&ctx->error, data, len);
case ZIP_SOURCE_FREE:
buffer_free(ctx->in);
buffer_free(ctx->out);
free(ctx);
return 0;
case ZIP_SOURCE_OPEN:
ctx->in->offset = 0;
ctx->in->current_fragment = 0;
return 0;
case ZIP_SOURCE_READ:
if (len > ZIP_INT64_MAX) {
zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
return -1;
}
return buffer_read(ctx->in, data, len);
case ZIP_SOURCE_REMOVE: {
buffer_t *empty = buffer_new(NULL, 0, 0, &ctx->error);
if (empty == NULL) {
return -1;
}
buffer_free(ctx->in);
ctx->in = empty;
return 0;
}
case ZIP_SOURCE_ROLLBACK_WRITE:
buffer_free(ctx->out);
ctx->out = NULL;
return 0;
case ZIP_SOURCE_SEEK:
return buffer_seek(ctx->in, data, len, &ctx->error);
case ZIP_SOURCE_SEEK_WRITE:
return buffer_seek(ctx->out, data, len, &ctx->error);
case ZIP_SOURCE_STAT: {
zip_stat_t *st;
if (len < sizeof(*st)) {
zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
return -1;
}
st = (zip_stat_t *)data;
zip_stat_init(st);
st->mtime = ctx->mtime;
st->size = ctx->in->size;
st->comp_size = st->size;
st->comp_method = ZIP_CM_STORE;
st->encryption_method = ZIP_EM_NONE;
st->valid = ZIP_STAT_MTIME | ZIP_STAT_SIZE | ZIP_STAT_COMP_SIZE | ZIP_STAT_COMP_METHOD | ZIP_STAT_ENCRYPTION_METHOD;
return sizeof(*st);
}
case ZIP_SOURCE_SUPPORTS:
return zip_source_make_command_bitmap(ZIP_SOURCE_OPEN, ZIP_SOURCE_READ, ZIP_SOURCE_CLOSE, ZIP_SOURCE_STAT, ZIP_SOURCE_ERROR, ZIP_SOURCE_FREE, ZIP_SOURCE_SEEK, ZIP_SOURCE_TELL, ZIP_SOURCE_BEGIN_WRITE, ZIP_SOURCE_BEGIN_WRITE_CLONING, ZIP_SOURCE_COMMIT_WRITE, ZIP_SOURCE_REMOVE, ZIP_SOURCE_ROLLBACK_WRITE, ZIP_SOURCE_SEEK_WRITE, ZIP_SOURCE_TELL_WRITE, ZIP_SOURCE_WRITE, -1);
case ZIP_SOURCE_TELL:
if (ctx->in->offset > ZIP_INT64_MAX) {
zip_error_set(&ctx->error, ZIP_ER_TELL, EOVERFLOW);
return -1;
}
return (zip_int64_t)ctx->in->offset;
case ZIP_SOURCE_TELL_WRITE:
if (ctx->out->offset > ZIP_INT64_MAX) {
zip_error_set(&ctx->error, ZIP_ER_TELL, EOVERFLOW);
return -1;
}
return (zip_int64_t)ctx->out->offset;
case ZIP_SOURCE_WRITE:
if (len > ZIP_INT64_MAX) {
zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
return -1;
}
return buffer_write(ctx->out, data, len, &ctx->error);
default:
zip_error_set(&ctx->error, ZIP_ER_OPNOTSUPP, 0);
return -1;
}
}
static buffer_t *
buffer_clone(buffer_t *buffer, zip_uint64_t offset, zip_error_t *error) {
zip_uint64_t fragment, fragment_offset, waste;
buffer_t *clone;
if (offset == 0) {
return buffer_new(NULL, 0, 1, error);
}
if (offset > buffer->size) {
zip_error_set(error, ZIP_ER_INVAL, 0);
return NULL;
}
if (buffer->shared_buffer != NULL) {
zip_error_set(error, ZIP_ER_INUSE, 0);
return NULL;
}
fragment = buffer_find_fragment(buffer, offset);
fragment_offset = offset - buffer->fragment_offsets[fragment];
if (fragment_offset == 0) {
fragment--;
fragment_offset = buffer->fragments[fragment].length;
}
waste = buffer->fragments[fragment].length - fragment_offset;
if (waste > offset) {
zip_error_set(error, ZIP_ER_OPNOTSUPP, 0);
return NULL;
}
if ((clone = buffer_new(buffer->fragments, fragment + 1, 0, error)) == NULL) {
return NULL;
}
#ifndef __clang_analyzer__
clone->fragments[clone->nfragments - 1].length = fragment_offset;
#endif
clone->fragment_offsets[clone->nfragments] = offset;
clone->size = offset;
clone->first_owned_fragment = ZIP_MIN(buffer->first_owned_fragment, clone->nfragments - 1);
buffer->shared_buffer = clone;
clone->shared_buffer = buffer;
buffer->shared_fragments = clone->nfragments;
clone->shared_fragments = fragment + 1;
return clone;
}
static zip_uint64_t
buffer_find_fragment(const buffer_t *buffer, zip_uint64_t offset) {
zip_uint64_t low, high, mid;
low = 0;
high = buffer->nfragments - 1;
while (low < high) {
mid = (high - low) / 2 + low;
if (buffer->fragment_offsets[mid] > offset) {
high = mid - 1;
}
else if (mid == buffer->nfragments || buffer->fragment_offsets[mid + 1] > offset) {
return mid;
}
else {
low = mid + 1;
}
}
return low;
}
static void
buffer_free(buffer_t *buffer) {
zip_uint64_t i;
if (buffer == NULL) {
return;
}
if (buffer->shared_buffer != NULL) {
buffer->shared_buffer->shared_buffer = NULL;
buffer->shared_buffer->shared_fragments = 0;
buffer->first_owned_fragment = ZIP_MAX(buffer->first_owned_fragment, buffer->shared_fragments);
}
for (i = buffer->first_owned_fragment; i < buffer->nfragments; i++) {
free(buffer->fragments[i].data);
}
free(buffer->fragments);
free(buffer->fragment_offsets);
free(buffer);
}
static bool
buffer_grow_fragments(buffer_t *buffer, zip_uint64_t capacity, zip_error_t *error) {
zip_buffer_fragment_t *fragments;
zip_uint64_t *offsets;
if (capacity < buffer->fragments_capacity) {
return true;
}
if ((fragments = realloc(buffer->fragments, sizeof(buffer->fragments[0]) * capacity)) == NULL) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
return false;
}
buffer->fragments = fragments;
if ((offsets = realloc(buffer->fragment_offsets, sizeof(buffer->fragment_offsets[0]) * (capacity + 1))) == NULL) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
return false;
}
buffer->fragment_offsets = offsets;
buffer->fragments_capacity = capacity;
return true;
}
static buffer_t *
buffer_new(const zip_buffer_fragment_t *fragments, zip_uint64_t nfragments, int free_data, zip_error_t *error) {
buffer_t *buffer;
if ((buffer = malloc(sizeof(*buffer))) == NULL) {
return NULL;
}
buffer->offset = 0;
buffer->first_owned_fragment = 0;
buffer->size = 0;
buffer->fragments = NULL;
buffer->fragment_offsets = NULL;
buffer->nfragments = 0;
buffer->fragments_capacity = 0;
buffer->shared_buffer = NULL;
buffer->shared_fragments = 0;
if (nfragments == 0) {
if ((buffer->fragment_offsets = malloc(sizeof(buffer->fragment_offsets[0]))) == NULL) {
free(buffer);
zip_error_set(error, ZIP_ER_MEMORY, 0);
return NULL;
}
buffer->fragment_offsets[0] = 0;
}
else {
zip_uint64_t i, j, offset;
if (!buffer_grow_fragments(buffer, nfragments, NULL)) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
buffer_free(buffer);
return NULL;
}
offset = 0;
for (i = 0, j = 0; i < nfragments; i++) {
if (fragments[i].length == 0) {
continue;
}
if (fragments[i].data == NULL) {
zip_error_set(error, ZIP_ER_INVAL, 0);
buffer_free(buffer);
return NULL;
}
buffer->fragments[j].data = fragments[i].data;
buffer->fragments[j].length = fragments[i].length;
buffer->fragment_offsets[i] = offset;
offset += fragments[i].length;
j++;
}
buffer->nfragments = j;
buffer->first_owned_fragment = free_data ? 0 : buffer->nfragments;
buffer->fragment_offsets[nfragments] = offset;
buffer->size = offset;
}
return buffer;
}
static zip_int64_t
buffer_read(buffer_t *buffer, zip_uint8_t *data, zip_uint64_t length) {
zip_uint64_t n, i, fragment_offset;
length = ZIP_MIN(length, buffer->size - buffer->offset);
if (length == 0) {
return 0;
}
if (length > ZIP_INT64_MAX) {
return -1;
}
i = buffer->current_fragment;
fragment_offset = buffer->offset - buffer->fragment_offsets[i];
n = 0;
while (n < length) {
zip_uint64_t left = ZIP_MIN(length - n, buffer->fragments[i].length - fragment_offset);
memcpy(data + n, buffer->fragments[i].data + fragment_offset, left);
if (left == buffer->fragments[i].length - fragment_offset) {
i++;
}
n += left;
fragment_offset = 0;
}
buffer->offset += n;
buffer->current_fragment = i;
return (zip_int64_t)n;
}
static int
buffer_seek(buffer_t *buffer, void *data, zip_uint64_t len, zip_error_t *error) {
zip_int64_t new_offset = zip_source_seek_compute_offset(buffer->offset, buffer->size, data, len, error);
if (new_offset < 0) {
return -1;
}
buffer->offset = (zip_uint64_t)new_offset;
buffer->current_fragment = buffer_find_fragment(buffer, buffer->offset);
return 0;
}
static zip_int64_t
buffer_write(buffer_t *buffer, const zip_uint8_t *data, zip_uint64_t length, zip_error_t *error) {
zip_uint64_t n, i, fragment_offset, capacity;
if (buffer->offset + length + WRITE_FRAGMENT_SIZE - 1 < length) {
zip_error_set(error, ZIP_ER_INVAL, 0);
return -1;
}
capacity = buffer_capacity(buffer);
if (buffer->offset + length > capacity) {
zip_uint64_t needed_fragments = buffer->nfragments + (length - (capacity - buffer->offset) + WRITE_FRAGMENT_SIZE - 1) / WRITE_FRAGMENT_SIZE;
if (needed_fragments > buffer->fragments_capacity) {
zip_uint64_t new_capacity = buffer->fragments_capacity;
if (new_capacity == 0) {
new_capacity = 16;
}
while (new_capacity < needed_fragments) {
new_capacity *= 2;
}
if (!buffer_grow_fragments(buffer, new_capacity, error)) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
return -1;
}
}
while (buffer->nfragments < needed_fragments) {
if ((buffer->fragments[buffer->nfragments].data = malloc(WRITE_FRAGMENT_SIZE)) == NULL) {
zip_error_set(error, ZIP_ER_MEMORY, 0);
return -1;
}
buffer->fragments[buffer->nfragments].length = WRITE_FRAGMENT_SIZE;
buffer->nfragments++;
capacity += WRITE_FRAGMENT_SIZE;
buffer->fragment_offsets[buffer->nfragments] = capacity;
}
}
i = buffer->current_fragment;
fragment_offset = buffer->offset - buffer->fragment_offsets[i];
n = 0;
while (n < length) {
zip_uint64_t left = ZIP_MIN(length - n, buffer->fragments[i].length - fragment_offset);
memcpy(buffer->fragments[i].data + fragment_offset, data + n, left);
if (left == buffer->fragments[i].length - fragment_offset) {
i++;
}
n += left;
fragment_offset = 0;
}
buffer->offset += n;
buffer->current_fragment = i;
if (buffer->offset > buffer->size) {
buffer->size = buffer->offset;
}
return (zip_int64_t)n;
}