libssh2-sys 0.1.39

Native bindings to the libssh2 library
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
	Definitions needed to implement a specific crypto library

This document offers some hints about implementing a new crypto library
interface.

A crypto library interface consists of at least a header file, defining
entities referenced from the libssh2 core modules.
Real code implementation (if needed), is left at the implementor's choice.

This document lists the entities that must/may be defined in the header file.

Procedures listed as "void" may indeed have a result type: the void indication
indicates the libssh2 core modules never use the function result.


1) Crypto library initialization/termination.

void libssh2_crypto_init(void);
Initializes the crypto library. May be an empty macro if not needed.

void libssh2_crypto_exit(void);
Terminates the crypto library use. May be an empty macro if not needed.


2) HMAC

libssh2_hmac_ctx
Type of an HMAC computation context. Generally a struct.
Used for all hash algorithms.

void libssh2_hmac_ctx_init(libssh2_hmac_ctx ctx);
Initializes the HMAC computation context ctx.
Called before setting-up the hash algorithm.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_hmac_update(libssh2_hmac_ctx ctx,
	                 const unsigned char *data,
	                 int datalen);
Continue computation of an HMAC on datalen bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_hmac_final(libssh2_hmac_ctx ctx,
	                unsigned char output[]);
Get the computed HMAC from context ctx into the output buffer. The
minimum data buffer size depends on the HMAC hash algorithm.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_hmac_cleanup(libssh2_hmac_ctx *ctx);
Releases the HMAC computation context at ctx.


3) Hash algorithms.

3.1) SHA-1
Must always be implemented.

SHA_DIGEST_LENGTH
#define to 20, the SHA-1 digest length.

libssh2_sha1_ctx
Type of an SHA1 computation context. Generally a struct.

int libssh2_sha1_init(libssh2_sha1_ctx *x);
Initializes the SHA-1 computation context at x.
Returns 1 for success and 0 for failure

void libssh2_sha1_update(libssh2_sha1_ctx ctx,
	                 const unsigned char *data,
	                 size_t len);
Continue computation of SHA-1 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_sha1_final(libssh2_sha1_ctx ctx,
                        unsigned char output[SHA1_DIGEST_LEN]);
Get the computed SHA-1 signature from context ctx and store it into the
output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_hmac_sha1_init(libssh2_hmac_ctx *ctx,
	                    const void *key,
	                    int keylen);
Setup the HMAC computation context ctx for an HMAC-SHA-1 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().

3.2) SHA-256
Must always be implemented.

SHA256_DIGEST_LENGTH
#define to 32, the SHA-256 digest length.

libssh2_sha256_ctx
Type of an SHA-256 computation context. Generally a struct.

int libssh2_sha256_init(libssh2_sha256_ctx *x);
Initializes the SHA-256 computation context at x.
Returns 1 for success and 0 for failure

void libssh2_sha256_update(libssh2_sha256_ctx ctx,
	                   const unsigned char *data,
	                   size_t len);
Continue computation of SHA-256 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_sha256_final(libssh2_sha256_ctx ctx,
	                  unsigned char output[SHA256_DIGEST_LENGTH]);
Gets the computed SHA-256 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

int libssh2_sha256(const unsigned char *message,
                   unsigned long len,
                   unsigned char output[SHA256_DIGEST_LENGTH]);
Computes the SHA-256 signature over the given message of length len and
store the result into the output buffer.
Return 1 if error, else 0.
Note: Seems unused in current code, but defined in each crypto library backend.

LIBSSH2_HMAC_SHA256
#define as 1 if the crypto library supports HMAC-SHA-256, else 0.
If defined as 0, the rest of this section can be omitted.

void libssh2_hmac_sha256_init(libssh2_hmac_ctx *ctx,
	                      const void *key,
	                      int keylen);
Setup the HMAC computation context ctx for an HMAC-256 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().

3.3) SHA-512
LIBSSH2_HMAC_SHA512
#define as 1 if the crypto library supports HMAC-SHA-512, else 0.
If defined as 0, the rest of this section can be omitted.

SHA512_DIGEST_LENGTH
#define to 64, the SHA-512 digest length.

void libssh2_hmac_sha512_init(libssh2_hmac_ctx *ctx,
	                      const void *key,
	                      int keylen);
Setup the HMAC computation context ctx for an HMAC-512 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().

3.4) MD5
LIBSSH2_MD5
#define to 1 if the crypto library supports MD5, else 0.
If defined as 0, the rest of this section can be omitted.

MD5_DIGEST_LENGTH
#define to 16, the MD5 digest length.

libssh2_md5_ctx
Type of an MD5 computation context. Generally a struct.

int libssh2_md5_init(libssh2_md5_ctx *x);
Initializes the MD5 computation context at x.
Returns 1 for success and 0 for failure

void libssh2_md5_update(libssh2_md5_ctx ctx,
	                const unsigned char *data,
	                size_t len);
Continues computation of MD5 on len bytes at data using context ctx.
Returns 1 for success and 0 for failure.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_md5_final(libssh2_md5_ctx ctx,
	               unsigned char output[MD5_DIGEST_LENGTH]);
Gets the computed MD5 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.

void libssh2_hmac_md5_init(libssh2_hmac_ctx *ctx,
	                   const void *key,
	                   int keylen);
Setup the HMAC computation context ctx for an HMAC-MD5 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().

3.5) RIPEMD-160
LIBSSH2_HMAC_RIPEMD
#define as 1 if the crypto library supports HMAC-RIPEMD-160, else 0.
If defined as 0, the rest of this section can be omitted.

void libssh2_hmac_ripemd160_init(libssh2_hmac_ctx *ctx,
	                         const void *key,
	                         int keylen);
Setup the HMAC computation context ctx for an HMAC-RIPEMD-160 computation using
the keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.


4) Bidirectional Key ciphers.

_libssh2_cipher_ctx
Type of a cipher computation context.

_libssh2_cipher_type(name);
Macro defining name as storage identifying a cipher algorithm for
the crypto library interface. No trailing semicolon.

int _libssh2_cipher_init(_libssh2_cipher_ctx *h,
                         _libssh2_cipher_type(algo),
                         unsigned char *iv,
                         unsigned char *secret,
                         int encrypt);
Creates a cipher context for the given algorithm with the initialization vector
iv and the secret key secret. Prepare for encryption or decryption depending on
encrypt.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_cipher_crypt(_libssh2_cipher_ctx *ctx,
                          _libssh2_cipher_type(algo),
                          int encrypt,
                          unsigned char *block,
                          size_t blocksize);
Encrypt or decrypt in-place data at (block, blocksize) using the given
context and/or algorithm.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

void _libssh2_cipher_dtor(_libssh2_cipher_ctx *ctx);
Release cipher context at ctx.

4.1) AES
4.1.1) AES in CBC block mode.
LIBSSH2_AES
#define as 1 if the crypto library supports AES in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.

_libssh2_cipher_aes128
AES-128-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

_libssh2_cipher_aes192
AES-192-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

_libssh2_cipher_aes256
AES-256-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

4.1.2) AES in CTR block mode.
LIBSSH2_AES_CTR
#define as 1 if the crypto library supports AES in CTR mode, else 0.
If defined as 0, the rest of this section can be omitted.

void _libssh2_init_aes_ctr(void);
Initialize static AES CTR ciphers.
This procedure is already prototyped in crypto.h.

_libssh2_cipher_aes128ctr
AES-128-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

_libssh2_cipher_aes192ctr
AES-192-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

_libssh2_cipher_aes256ctr
AES-256-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

4.2) Blowfish in CBC block mode.
LIBSSH2_BLOWFISH
#define as 1 if the crypto library supports blowfish in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.

_libssh2_cipher_blowfish
Blowfish-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

4.3) RC4.
LIBSSH2_RC4
#define as 1 if the crypto library supports RC4 (arcfour), else 0.
If defined as 0, the rest of this section can be omitted.

_libssh2_cipher_arcfour
RC4 algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

4.4) CAST5 in CBC block mode.
LIBSSH2_CAST
#define 1 if the crypto library supports cast, else 0.
If defined as 0, the rest of this section can be omitted.

_libssh2_cipher_cast5
CAST5-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().

4.5) Tripple DES in CBC block mode.
LIBSSH2_3DES
#define as 1 if the crypto library supports TripleDES in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.

_libssh2_cipher_3des
TripleDES-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().


5) Big numbers.
Positive multi-byte integers support is sufficient.

5.1) Computation contexts.
This has a real meaning if the big numbers computations need some context
storage. If not, use a dummy type and functions (macros).

_libssh2_bn_ctx
Type of multiple precision computation context. May not be empty. if not used,
#define as char, for example.

libssh2_bn_ctx _libssh2_bn_ctx_new(void);
Returns a new multiple precision computation context.

void _libssh2_bn_ctx_free(_libssh2_bn_ctx ctx);
Releases a multiple precision computation context.

5.2) Computation support.
_libssh2_bn
Type of multiple precision numbers (aka bignumbers or huge integers) for the
crypto library.

_libssh2_bn * _libssh2_bn_init(void);
Creates a multiple precision number (preset to zero).

_libssh2_bn * _libssh2_bn_init_from_bin(void);
Create a multiple precision number intended to be set by the
_libssh2_bn_from_bin() function (see below). Unlike _libssh2_bn_init(), this
code may be a dummy initializer if the _libssh2_bn_from_bin() actually
allocates the number. Returns a value of type _libssh2_bn *.

void _libssh2_bn_free(_libssh2_bn *bn);
Destroys the multiple precision number at bn.

unsigned long _libssh2_bn_bytes(libssh2_bn *bn);
Get the number of bytes needed to store the bits of the multiple precision
number at bn.

unsigned long _libssh2_bn_bits(_libssh2_bn *bn);
Returns the number of bits of multiple precision number at bn.

int _libssh2_bn_set_word(_libssh2_bn *bn, unsigned long val);
Sets the value of bn to val.
Returns 1 on success, 0 otherwise.

_libssh2_bn * _libssh2_bn_from_bin(_libssh2_bn *bn, int len,
	                           const unsigned char *val);
Converts the positive integer in big-endian form of length len at val
into a _libssh2_bn and place it in bn. If bn is NULL, a new _libssh2_bn is
created.
Returns a pointer to target _libssh2_bn or NULL if error.

int _libssh2_bn_to_bin(_libssh2_bn *bn, unsigned char *val);
Converts the absolute value of bn into big-endian form and store it at
val. val must point to _libssh2_bn_bytes(bn) bytes of memory.
Returns the length of the big-endian number.

void _libssh2_bn_rand(_libssh2_bn *bn, int bits, int top, int bottom);
Generates a cryptographically strong pseudo-random number of bits in
length and stores it in bn. If top is -1, the most significant bit of the
random number can be zero. If top is 0, it is set to 1, and if top is 1, the
two most significant bits of the number will be set to 1, so that the product
of two such random numbers will always have 2*bits length. If bottom is true,
the number will be odd.

void _libssh2_bn_mod_exp(_libssh2_bn *r, _libssh2_bn *a,
	                 _libssh2_bn *p, _libssh2_bn *m,
	                 _libssh2_bn_ctx *ctx);
Computes a to the p-th power modulo m and stores the result into r (r=a^p % m).
May use the given context.


6) Private key algorithms.
Format of an RSA public key:
a) "ssh-rsa".
b) RSA exponent, MSB first, with high order bit = 0.
c) RSA modulus, MSB first, with high order bit = 0.
Each item is preceded by its 32-bit byte length, MSB first.

Format of a DSA public key:
a) "ssh-dss".
b) p, MSB first, with high order bit = 0.
c) q, MSB first, with high order bit = 0.
d) g, MSB first, with high order bit = 0.
e) pub_key, MSB first, with high order bit = 0.
Each item is preceded by its 32-bit byte length, MSB first.

int _libssh2_pub_priv_keyfile(LIBSSH2_SESSION *session,
                              unsigned char **method,
                              size_t *method_len,
                              unsigned char **pubkeydata,
                              size_t *pubkeydata_len,
                              const char *privatekey,
                              const char *passphrase);
Reads a private key from file privatekey and extract the public key -->
(pubkeydata, pubkeydata_len). Store the associated method (ssh-rsa or ssh-dss)
into (method, method_len).
Both buffers have to be allocated using LIBSSH2_ALLOC().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_pub_priv_keyfilememory(LIBSSH2_SESSION *session,
                                    unsigned char **method,
                                    size_t *method_len,
                                    unsigned char **pubkeydata,
                                    size_t *pubkeydata_len,
                                    const char *privatekeydata,
                                    size_t privatekeydata_len,
                                    const char *passphrase);
Gets a private key from bytes at (privatekeydata, privatekeydata_len) and
extract the public key --> (pubkeydata, pubkeydata_len). Store the associated
method (ssh-rsa or ssh-dss) into (method, method_len).
Both buffers have to be allocated using LIBSSH2_ALLOC().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

6.1) RSA
LIBSSH2_RSA
#define as 1 if the crypto library supports RSA, else 0.
If defined as 0, the rest of this section can be omitted.

libssh2_rsa_ctx
Type of an RSA computation context. Generally a struct.

int _libssh2_rsa_new(libssh2_rsa_ctx **rsa,
                     const unsigned char *edata,
                     unsigned long elen,
                     const unsigned char *ndata,
                     unsigned long nlen,
                     const unsigned char *ddata,
                     unsigned long dlen,
                     const unsigned char *pdata,
                     unsigned long plen,
                     const unsigned char *qdata,
                     unsigned long qlen,
                     const unsigned char *e1data,
                     unsigned long e1len,
                     const unsigned char *e2data,
                     unsigned long e2len,
                     const unsigned char *coeffdata, unsigned long coefflen);
Creates a new context for RSA computations from key source values:
	pdata, plen	Prime number p. Only used if private key known (ddata).
	qdata, qlen	Prime number q. Only used if private key known (ddata).
	ndata, nlen	Modulus n.
	edata, elen	Exponent e.
	ddata, dlen	e^-1 % phi(n) = private key. May be NULL if unknown.
	e1data, e1len	dp = d % (p-1). Only used if private key known (dtata).
	e2data, e2len	dq = d % (q-1). Only used if private key known (dtata).
	coeffdata, coefflen	q^-1 % p. Only used if private key known.
Returns 0 if OK.
This procedure is already prototyped in crypto.h.
Note: the current generic code only calls this function with e and n (public
key parameters): unless used internally by the backend, it is not needed to
support the private key and the other parameters here.

int _libssh2_rsa_new_private(libssh2_rsa_ctx **rsa,
                             LIBSSH2_SESSION *session,
                             const char *filename,
                             unsigned const char *passphrase);
Reads an RSA private key from file filename into a new RSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_rsa_new_private_frommemory(libssh2_rsa_ctx **rsa,
                                        LIBSSH2_SESSION *session,
                                        const char *data,
					size_t data_len,
                                        unsigned const char *passphrase);
Gets an RSA private key from data into a new RSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_rsa_sha1_verify(libssh2_rsa_ctx *rsa,
                             const unsigned char *sig,
                             unsigned long sig_len,
                             const unsigned char *m, unsigned long m_len);
Verify (sig, siglen) signature of (m, m_len) using an SHA-1 hash and the
RSA context.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_rsa_sha1_signv(LIBSSH2_SESSION *session,
	                    unsigned char **sig, size_t *siglen,
	                    int count, const struct iovec vector[],
	                    libssh2_rsa_ctx *ctx);
RSA signs the SHA-1 hash computed over the count data chunks in vector.
Signature is stored at (sig, siglen).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
Note: this procedure is optional: if provided, it MUST be defined as a macro.

int _libssh2_rsa_sha1_sign(LIBSSH2_SESSION *session,
                           libssh2_rsa_ctx *rsactx,
                           const unsigned char *hash,
                           size_t hash_len,
                           unsigned char **signature,
                           size_t *signature_len);
RSA signs the (hash, hashlen) SHA-1 hash bytes and stores the allocated
signature at (signature, signature_len).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
Note: this procedure is not used if macro _libssh2_rsa_sha1_signv() is defined.

void _libssh2_rsa_free(libssh2_rsa_ctx *rsactx);
Releases the RSA computation context at rsactx.


6.2) DSA
LIBSSH2_DSA
#define as 1 if the crypto library supports DSA, else 0.
If defined as 0, the rest of this section can be omitted.


libssh2_dsa_ctx
Type of a DSA computation context. Generally a struct.

int _libssh2_dsa_new(libssh2_dsa_ctx **dsa,
                     const unsigned char *pdata,
                     unsigned long plen,
                     const unsigned char *qdata,
                     unsigned long qlen,
                     const unsigned char *gdata,
                     unsigned long glen,
                     const unsigned char *ydata,
                     unsigned long ylen,
                     const unsigned char *x, unsigned long x_len);
Creates a new context for DSA computations from source key values:
	pdata, plen	Prime number p. Only used if private key known (ddata).
	qdata, qlen	Prime number q. Only used if private key known (ddata).
	gdata, glen	G number.
	ydata, ylen	Public key.
	xdata, xlen	Private key. Only taken if xlen non-zero.
Returns 0 if OK.
This procedure is already prototyped in crypto.h.

int _libssh2_dsa_new_private(libssh2_dsa_ctx **dsa,
                             LIBSSH2_SESSION *session,
                             const char *filename,
                             unsigned const char *passphrase);
Gets a DSA private key from file filename into a new DSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_dsa_new_private_frommemory(libssh2_dsa_ctx **dsa,
                                        LIBSSH2_SESSION *session,
                                        const char *data,
					size_t data_len,
                                        unsigned const char *passphrase);
Gets a DSA private key from the data_len-bytes data into a new DSA context.
Must call _libssh2_init_if_needed().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_dsa_sha1_verify(libssh2_dsa_ctx *dsactx,
                             const unsigned char *sig,
                             const unsigned char *m, unsigned long m_len);
Verify (sig, siglen) signature of (m, m_len) using an SHA1 hash and the
DSA context.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

int _libssh2_dsa_sha1_sign(libssh2_dsa_ctx *dsactx,
                           const unsigned char *hash,
                           unsigned long hash_len, unsigned char *sig);
DSA signs the (hash, hash_len) data using SHA-1 and store the signature at sig.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.

void _libssh2_dsa_free(libssh2_dsa_ctx *dsactx);
Releases the DSA computation context at dsactx.


7) Miscellaneous

void libssh2_prepare_iovec(struct iovec *vector, unsigned int len);
Prepare len consecutive iovec slots before using them.
In example, this is needed to preset unused structure slacks on platforms
requiring it.
If this is not needed, it should be defined as an empty macro.

void _libssh2_random(unsigned char *buf, int len);
Store len random bytes at buf.