libblur 0.13.2

Fast image blurring in pure Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
// Copyright (c) Radzivon Bartoshyk. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// 1.  Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2.  Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3.  Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
use crate::neon::{
    fast_gaussian_next_horizontal_pass_neon_f32, fast_gaussian_next_horizontal_pass_neon_u8,
    fast_gaussian_next_vertical_pass_neon_f32, fast_gaussian_next_vertical_pass_neon_u8,
};
use crate::reflect_index;
#[cfg(all(
    any(target_arch = "x86_64", target_arch = "x86"),
    target_feature = "sse4.1"
))]
use crate::sse::{
    fast_gaussian_next_horizontal_pass_sse_u8, fast_gaussian_next_vertical_pass_sse_u8,
};
use crate::to_storage::ToStorage;
use crate::unsafe_slice::UnsafeSlice;
use crate::{clamp_edge, reflect_101, EdgeMode, FastBlurChannels, ThreadingPolicy};
use colorutils_rs::linear_to_planar::linear_to_plane;
use colorutils_rs::planar_to_linear::plane_to_linear;
use colorutils_rs::{
    linear_to_rgb, linear_to_rgba, rgb_to_linear, rgba_to_linear, TransferFunction,
};
use num_traits::{AsPrimitive, Float, FromPrimitive};
use std::mem::size_of;

const BASE_RADIUS_I64_CUTOFF: u32 = 125;

/**
 RRRRRR  OOOOO  U     U TTTTTTT IIIII NN   N EEEEEEE SSSSS
 R     R O     O U     U   T     I   I N N  N E       S
RRRRRR  O     O U     U   T     I   I N  N N EEEEE    SSS
R   R   O     O U     U   T     I   I N   NN E            S
R    R   OOOOO   UUUUU    T    IIIII N    N EEEEEEE  SSSSS
 **/

macro_rules! impl_generic_call {
    ($store_type:ty, $channels_type:expr, $edge_mode:expr, $bytes:expr, $stride:expr, $width:expr, $height:expr, $radius:expr, $threading_policy:expr) => {
        match $channels_type {
            FastBlurChannels::Plane => {
                fast_gaussian_next_impl::<$store_type, 1, $edge_mode>(
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy,
                );
            }
            FastBlurChannels::Channels3 => {
                fast_gaussian_next_impl::<$store_type, 3, $edge_mode>(
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy,
                );
            }
            FastBlurChannels::Channels4 => {
                fast_gaussian_next_impl::<$store_type, 4, $edge_mode>(
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy,
                );
            }
        }
    };
}

macro_rules! impl_margin_call {
    ($store_type:ty, $channels_type:expr, $edge_mode:expr,
    $bytes:expr, $stride:expr, $width:expr, $height:expr,
    $radius:expr, $threading_policy:expr) => {
        match $edge_mode {
            EdgeMode::Clamp => {
                impl_generic_call!(
                    $store_type,
                    $channels_type,
                    { EdgeMode::Clamp as usize },
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy
                );
            }
            EdgeMode::KernelClip => {
                panic!("Kernel clip is supported only in gaussian")
            }
            EdgeMode::Wrap => {
                impl_generic_call!(
                    $store_type,
                    $channels_type,
                    { EdgeMode::Wrap as usize },
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy
                );
            }
            EdgeMode::Reflect => {
                impl_generic_call!(
                    $store_type,
                    $channels_type,
                    { EdgeMode::Reflect as usize },
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy
                );
            }
            EdgeMode::Reflect101 => {
                impl_generic_call!(
                    $store_type,
                    $channels_type,
                    { EdgeMode::Reflect101 as usize },
                    $bytes,
                    $stride,
                    $width,
                    $height,
                    $radius,
                    $threading_policy
                );
            }
        }
    };
}

macro_rules! write_out_blurred {
    ($sum:expr, $weight:expr, $bytes:expr, $bytes_offset:expr) => {{
        let sum_f: M = $sum.as_();
        let new_v: T = (sum_f * $weight).to_();
        unsafe {
            $bytes.write($bytes_offset, new_v);
        }
    }};
}

macro_rules! update_differences_inside {
    ($dif:expr, $buffer:expr, $d_idx:expr, $d_idx_1:expr, $d_idx_2:expr) => {{
        let threes = J::from_i32(3i32).unwrap();
        $dif += threes
            * (unsafe { *$buffer.get_unchecked($d_idx) }
                - unsafe { *$buffer.get_unchecked($d_idx_1) })
            - unsafe { *$buffer.get_unchecked($d_idx_2) };
    }};
}

macro_rules! update_differences_one_rad {
    ($dif:expr, $buffer:expr, $d_idx:expr, $d_idx_1:expr) => {{
        let threes = J::from_i32(3i32).unwrap();
        $dif += threes
            * (unsafe { *$buffer.get_unchecked($d_idx) }
                - unsafe { *$buffer.get_unchecked($d_idx_1) });
    }};
}

macro_rules! update_differences_two_rad {
    ($dif:expr, $buffer:expr, $d_idx:expr) => {{
        let threes = J::from_i32(3i32).unwrap();
        $dif -= threes * unsafe { *$buffer.get_unchecked($d_idx) };
    }};
}

macro_rules! update_sum_in {
    ($bytes:expr, $bytes_offset:expr, $dif:expr, $der:expr, $sum:expr, $buffer:expr, $arr_index:expr) => {{
        let v: J = $bytes[$bytes_offset].as_();
        $dif += v;
        $der += $dif;
        $sum += $der;
        unsafe {
            *$buffer.get_unchecked_mut($arr_index) = v;
        }
    }};
}

/// # Params
/// `T` - type of buffer
/// `J` - accumulator type
/// `M` - multiplication type, when weight will be applied this type will be used also
fn fast_gaussian_next_vertical_pass<
    T: FromPrimitive + Default,
    J,
    M,
    const CHANNEL_CONFIGURATION: usize,
    const EDGE_MODE: usize,
>(
    bytes: &UnsafeSlice<T>,
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    start: u32,
    end: u32,
) where
    T: std::ops::AddAssign
        + 'static
        + std::ops::SubAssign
        + Copy
        + FromPrimitive
        + Default
        + AsPrimitive<J>,
    J: Copy
        + FromPrimitive
        + Default
        + std::ops::Mul<Output = J>
        + std::ops::Sub<Output = J>
        + std::ops::Add<Output = J>
        + std::ops::AddAssign
        + std::ops::SubAssign
        + AsPrimitive<M>,
    M: Copy + FromPrimitive + std::ops::Mul<Output = M> + AsPrimitive<T> + Float + ToStorage<T>,
    i32: AsPrimitive<J>,
{
    let edge_mode: EdgeMode = EDGE_MODE.into();
    let mut buffer_r: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_g: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_b: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_a: [J; 1024] = [0i32.as_(); 1024];
    let radius_64 = radius as i64;
    let height_wide = height as i64;
    let weight =
        M::from_f64(1.0f64 / ((radius as f64) * (radius as f64) * (radius as f64))).unwrap();
    for x in start..std::cmp::min(width, end) {
        let mut dif_r: J = 0i32.as_();
        let mut der_r: J = 0i32.as_();
        let mut sum_r: J = 0i32.as_();
        let mut dif_g: J = 0i32.as_();
        let mut der_g: J = 0i32.as_();
        let mut sum_g: J = 0i32.as_();
        let mut dif_b: J = 0i32.as_();
        let mut der_b: J = 0i32.as_();
        let mut sum_b: J = 0i32.as_();
        let mut dif_a: J = 0i32.as_();
        let mut der_a: J = 0i32.as_();
        let mut sum_a: J = 0i32.as_();

        let current_px = (x * CHANNEL_CONFIGURATION as u32) as usize;

        let start_y = 0 - 3 * radius as i64;
        for y in start_y..height_wide {
            let current_y = (y * (stride as i64)) as usize;
            if y >= 0 {
                let bytes_offset = current_y + current_px;

                write_out_blurred!(sum_r, weight, bytes, bytes_offset);
                if CHANNEL_CONFIGURATION > 1 {
                    write_out_blurred!(sum_g, weight, bytes, bytes_offset + 1);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    write_out_blurred!(sum_b, weight, bytes, bytes_offset + 2);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    write_out_blurred!(sum_a, weight, bytes, bytes_offset + 3);
                }

                let d_idx_1 = ((y + radius_64) & 1023) as usize;
                let d_idx_2 = ((y - radius_64) & 1023) as usize;
                let d_idx = (y & 1023) as usize;
                update_differences_inside!(dif_r, buffer_r, d_idx, d_idx_1, d_idx_2);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_inside!(dif_g, buffer_g, d_idx, d_idx_1, d_idx_2);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_inside!(dif_b, buffer_b, d_idx, d_idx_1, d_idx_2);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_inside!(dif_a, buffer_a, d_idx, d_idx_1, d_idx_2);
                }
            } else if y + radius_64 >= 0 {
                let arr_index = (y & 1023) as usize;
                let arr_index_1 = ((y + radius_64) & 1023) as usize;
                update_differences_one_rad!(dif_r, buffer_r, arr_index, arr_index_1);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_one_rad!(dif_g, buffer_g, arr_index, arr_index_1);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_one_rad!(dif_b, buffer_b, arr_index, arr_index_1);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_one_rad!(dif_a, buffer_a, arr_index, arr_index_1);
                }
            } else if y + 2 * radius_64 >= 0 {
                let arr_index = ((y + radius_64) & 1023) as usize;
                update_differences_two_rad!(dif_r, buffer_r, arr_index);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_two_rad!(dif_g, buffer_g, arr_index);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_two_rad!(dif_b, buffer_b, arr_index);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_two_rad!(dif_a, buffer_a, arr_index);
                }
            }

            let next_row_y = clamp_edge!(edge_mode, y + ((3 * radius_64) >> 1), 0, height_wide - 1)
                * (stride as usize);
            let next_row_x = (x * CHANNEL_CONFIGURATION as u32) as usize;

            let px_idx = next_row_y + next_row_x;

            let arr_index = ((y + 2 * radius_64) & 1023) as usize;
            update_sum_in!(bytes, px_idx, dif_r, der_r, sum_r, buffer_r, arr_index);
            if CHANNEL_CONFIGURATION > 1 {
                update_sum_in!(bytes, px_idx + 1, dif_g, der_g, sum_g, buffer_g, arr_index);
            }
            if CHANNEL_CONFIGURATION > 2 {
                update_sum_in!(bytes, px_idx + 2, dif_b, der_b, sum_b, buffer_b, arr_index);
            }
            if CHANNEL_CONFIGURATION == 4 {
                update_sum_in!(bytes, px_idx + 3, dif_a, der_a, sum_a, buffer_a, arr_index);
            }
        }
    }
}

/// # Params
/// `T` - type of buffer
/// `J` - accumulator type
/// `M` - multiplication type, when weight will be applied this type will be used also
fn fast_gaussian_next_horizontal_pass<
    T: FromPrimitive + Default + Send + Sync,
    J,
    M,
    const CHANNEL_CONFIGURATION: usize,
    const EDGE_MODE: usize,
>(
    bytes: &UnsafeSlice<T>,
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    start: u32,
    end: u32,
) where
    T: std::ops::AddAssign
        + 'static
        + std::ops::SubAssign
        + Copy
        + FromPrimitive
        + Default
        + AsPrimitive<J>,
    J: Copy
        + FromPrimitive
        + Default
        + std::ops::Mul<Output = J>
        + std::ops::Sub<Output = J>
        + std::ops::Add<Output = J>
        + std::ops::AddAssign
        + std::ops::SubAssign
        + AsPrimitive<M>,
    M: Copy + FromPrimitive + std::ops::Mul<Output = M> + AsPrimitive<T> + Float + ToStorage<T>,
    f32: AsPrimitive<T>,
    i32: AsPrimitive<J>,
{
    let edge_mode: EdgeMode = EDGE_MODE.into();
    let mut buffer_r: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_g: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_b: [J; 1024] = [0i32.as_(); 1024];
    let mut buffer_a: [J; 1024] = [0i32.as_(); 1024];
    let radius_64 = radius as i64;
    let width_wide = width as i64;
    let weight =
        M::from_f64(1.0f64 / ((radius as f64) * (radius as f64) * (radius as f64))).unwrap();
    for y in start..std::cmp::min(height, end) {
        let mut dif_r: J = 0i32.as_();
        let mut der_r: J = 0i32.as_();
        let mut sum_r: J = 0i32.as_();
        let mut dif_g: J = 0i32.as_();
        let mut der_g: J = 0i32.as_();
        let mut sum_g: J = 0i32.as_();
        let mut dif_b: J = 0i32.as_();
        let mut der_b: J = 0i32.as_();
        let mut sum_b: J = 0i32.as_();
        let mut dif_a: J = 0i32.as_();
        let mut der_a: J = 0i32.as_();
        let mut sum_a: J = 0i32.as_();

        let current_y = ((y as i64) * (stride as i64)) as usize;

        for x in (0 - 3 * radius_64)..(width as i64) {
            if x >= 0 {
                let current_px = x as usize * CHANNEL_CONFIGURATION;

                let bytes_offset = current_y + current_px;

                write_out_blurred!(sum_r, weight, bytes, bytes_offset);
                if CHANNEL_CONFIGURATION > 1 {
                    write_out_blurred!(sum_g, weight, bytes, bytes_offset + 1);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    write_out_blurred!(sum_b, weight, bytes, bytes_offset + 2);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    write_out_blurred!(sum_a, weight, bytes, bytes_offset + 3);
                }

                let d_idx_1 = ((x + radius_64) & 1023) as usize;
                let d_idx_2 = ((x - radius_64) & 1023) as usize;
                let d_idx = (x & 1023) as usize;
                update_differences_inside!(dif_r, buffer_r, d_idx, d_idx_1, d_idx_2);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_inside!(dif_g, buffer_g, d_idx, d_idx_1, d_idx_2);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_inside!(dif_b, buffer_b, d_idx, d_idx_1, d_idx_2);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_inside!(dif_a, buffer_a, d_idx, d_idx_1, d_idx_2);
                }
            } else if x + radius_64 >= 0 {
                let arr_index = (x & 1023) as usize;
                let arr_index_1 = ((x + radius_64) & 1023) as usize;
                update_differences_one_rad!(dif_r, buffer_r, arr_index, arr_index_1);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_one_rad!(dif_g, buffer_g, arr_index, arr_index_1);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_one_rad!(dif_b, buffer_b, arr_index, arr_index_1);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_one_rad!(dif_a, buffer_a, arr_index, arr_index_1);
                }
            } else if x + 2 * radius_64 >= 0 {
                let arr_index = ((x + radius_64) & 1023) as usize;
                update_differences_two_rad!(dif_r, buffer_r, arr_index);
                if CHANNEL_CONFIGURATION > 1 {
                    update_differences_two_rad!(dif_g, buffer_g, arr_index);
                }
                if CHANNEL_CONFIGURATION > 2 {
                    update_differences_two_rad!(dif_b, buffer_b, arr_index);
                }
                if CHANNEL_CONFIGURATION == 4 {
                    update_differences_two_rad!(dif_a, buffer_a, arr_index);
                }
            }

            let next_row_y = (y as usize) * (stride as usize);
            let next_row_x = clamp_edge!(edge_mode, x + 3 * radius_64 / 2, 0, width_wide - 1)
                * CHANNEL_CONFIGURATION;

            let px_off = next_row_y + next_row_x;

            let arr_index = ((x + 2 * radius_64) & 1023) as usize;

            update_sum_in!(bytes, px_off, dif_r, der_r, sum_r, buffer_r, arr_index);
            if CHANNEL_CONFIGURATION > 1 {
                update_sum_in!(bytes, px_off + 1, dif_g, der_g, sum_g, buffer_g, arr_index);
            }
            if CHANNEL_CONFIGURATION > 2 {
                update_sum_in!(bytes, px_off + 2, dif_b, der_b, sum_b, buffer_b, arr_index);
            }
            if CHANNEL_CONFIGURATION == 4 {
                update_sum_in!(bytes, px_off + 3, dif_a, der_a, sum_a, buffer_a, arr_index);
            }
        }
    }
}

fn fast_gaussian_next_impl<
    T: FromPrimitive + Default + Send + Sync,
    const CHANNEL_CONFIGURATION: usize,
    const EDGE_MODE: usize,
>(
    bytes: &mut [T],
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    threading_policy: ThreadingPolicy,
) where
    T: std::ops::AddAssign
        + std::ops::SubAssign
        + Copy
        + AsPrimitive<f32>
        + AsPrimitive<f64>
        + AsPrimitive<i64>
        + AsPrimitive<i32>,
    i64: AsPrimitive<T>,
    f32: AsPrimitive<T> + ToStorage<T>,
    f64: AsPrimitive<T> + ToStorage<T>,
{
    let mut _dispatcher_vertical: fn(
        bytes: &UnsafeSlice<T>,
        stride: u32,
        width: u32,
        height: u32,
        radius: u32,
        start: u32,
        end: u32,
    ) = if BASE_RADIUS_I64_CUTOFF > radius {
        fast_gaussian_next_vertical_pass::<T, i32, f32, CHANNEL_CONFIGURATION, EDGE_MODE>
    } else {
        fast_gaussian_next_vertical_pass::<T, i64, f64, CHANNEL_CONFIGURATION, EDGE_MODE>
    };
    let mut _dispatcher_horizontal: fn(
        bytes: &UnsafeSlice<T>,
        stride: u32,
        width: u32,
        height: u32,
        radius: u32,
        start: u32,
        end: u32,
    ) = if BASE_RADIUS_I64_CUTOFF > radius {
        fast_gaussian_next_horizontal_pass::<T, i32, f32, CHANNEL_CONFIGURATION, EDGE_MODE>
    } else {
        fast_gaussian_next_horizontal_pass::<T, i64, f64, CHANNEL_CONFIGURATION, EDGE_MODE>
    };

    if std::any::type_name::<T>() == "f32"
        || std::any::type_name::<T>() == "f16"
        || std::any::type_name::<T>() == "half::f16"
    {
        _dispatcher_vertical = if BASE_RADIUS_I64_CUTOFF > radius {
            fast_gaussian_next_vertical_pass::<T, f32, f32, CHANNEL_CONFIGURATION, EDGE_MODE>
        } else {
            fast_gaussian_next_vertical_pass::<T, f64, f64, CHANNEL_CONFIGURATION, EDGE_MODE>
        };
        _dispatcher_horizontal = if BASE_RADIUS_I64_CUTOFF > radius {
            fast_gaussian_next_horizontal_pass::<T, f32, f32, CHANNEL_CONFIGURATION, EDGE_MODE>
        } else {
            fast_gaussian_next_horizontal_pass::<T, f64, f64, CHANNEL_CONFIGURATION, EDGE_MODE>
        };
    }

    if CHANNEL_CONFIGURATION >= 3 {
        #[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
        {
            if BASE_RADIUS_I64_CUTOFF > radius {
                if std::any::type_name::<T>() == "u8" {
                    _dispatcher_vertical = fast_gaussian_next_vertical_pass_neon_u8::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                    _dispatcher_horizontal = fast_gaussian_next_horizontal_pass_neon_u8::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                } else if std::any::type_name::<T>() == "f32" {
                    _dispatcher_horizontal = fast_gaussian_next_horizontal_pass_neon_f32::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                    _dispatcher_vertical = fast_gaussian_next_vertical_pass_neon_f32::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                }
            }
        }
        #[cfg(all(
            any(target_arch = "x86_64", target_arch = "x86"),
            target_feature = "sse4.1"
        ))]
        {
            if BASE_RADIUS_I64_CUTOFF > radius {
                if std::any::type_name::<T>() == "u8" {
                    _dispatcher_vertical = fast_gaussian_next_vertical_pass_sse_u8::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                    _dispatcher_horizontal = fast_gaussian_next_horizontal_pass_sse_u8::<
                        T,
                        CHANNEL_CONFIGURATION,
                        EDGE_MODE,
                    >;
                }
            }
        }
    }
    let thread_count = threading_policy.get_threads_count(width, height) as u32;
    let pool = rayon::ThreadPoolBuilder::new()
        .num_threads(thread_count as usize)
        .build()
        .unwrap();

    let unsafe_image = UnsafeSlice::new(bytes);
    pool.scope(|scope| {
        let segment_size = width / thread_count;

        for i in 0..thread_count {
            let start_x = i * segment_size;
            let mut end_x = (i + 1) * segment_size;
            if i == thread_count - 1 {
                end_x = width;
            }
            scope.spawn(move |_| {
                _dispatcher_vertical(&unsafe_image, stride, width, height, radius, start_x, end_x);
            });
        }
    });

    pool.scope(|scope| {
        let segment_size = height / thread_count;

        for i in 0..thread_count {
            let start_y = i * segment_size;
            let mut end_y = (i + 1) * segment_size;
            if i == thread_count - 1 {
                end_y = height;
            }
            scope.spawn(move |_| {
                _dispatcher_horizontal(
                    &unsafe_image,
                    stride,
                    width,
                    height,
                    radius,
                    start_y,
                    end_y,
                );
            });
        }
    });
}

/// Performs gaussian approximation on the image.
///
/// Fast gaussian approximation for u8 image.
/// This is also a VERY fast approximation, however producing more pleasant results than stack blur, or first level of approximation.
/// Radius is limited to 280.
/// Approximation based on binomial filter.
/// O(1) complexity.
///
/// * `stride` - Lane length, default is width * channels_count if not aligned
/// * `width` - Width of the image
/// * `height` - Height of the image
/// * `radius` - Radius is limited to 280
/// * `channels` - Count of channels of the image, only 3 and 4 is supported, alpha position, and channels order does not matter
/// * `threading_policy` - Threads usage policy
/// * `edge_mode` - Edge handling mode, *Kernel clip* is not supported!
///
/// # Panics
/// Panic is stride/width/height/channel configuration do not match provided
pub fn fast_gaussian_next(
    bytes: &mut [u8],
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    channels: FastBlurChannels,
    threading_policy: ThreadingPolicy,
    edge_mode: EdgeMode,
) {
    let radius = std::cmp::min(radius, 280);
    impl_margin_call!(
        u8,
        channels,
        edge_mode,
        bytes,
        stride,
        width,
        height,
        radius,
        threading_policy
    );
}

/// Performs gaussian approximation on the image.
///
/// Fast gaussian approximation for u16 image.
/// This is also a VERY fast approximation, however producing more pleasant results than stack blur, or first level of approximation.
/// Radius is limited to 152.
/// Approximation based on binomial filter.
/// O(1) complexity.
///
/// * `stride` - Lane length, default is width * channels_count if not aligned
/// * `width` - Width of the image
/// * `height` - Height of the image
/// * `radius` - Radius more than ~152 is not supported. To use larger radius convert image to f32 and use function for f32
/// * `channels` - Count of channels of the image, only 3 and 4 is supported, alpha position, and channels order does not matter
/// * `threading_policy` - Threads usage policy
/// * `edge_mode` - Edge handling mode, *Kernel clip* is not supported!
///
/// # Panics
/// Panic is stride/width/height/channel configuration do not match provided
pub fn fast_gaussian_next_u16(
    bytes: &mut [u16],
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    channels: FastBlurChannels,
    threading_policy: ThreadingPolicy,
    edge_mode: EdgeMode,
) {
    let acq_radius = std::cmp::min(radius, 152);
    impl_margin_call!(
        u16,
        channels,
        edge_mode,
        bytes,
        stride,
        width,
        height,
        acq_radius,
        threading_policy
    );
}

/// Performs gaussian approximation on the image.
///
/// Fast gaussian approximation for u16 image.
/// This is also a VERY fast approximation, however producing more pleasant results than stack blur, or first level of approximation.
/// Approximation based on binomial filter.
/// O(1) complexity.
///
/// * `stride` - Lane length, default is width * channels_count if not aligned
/// * `width` - Width of the image
/// * `height` - Height of the image
/// * `radius` - Almost any radius is supported, in real world radius > 300 is too big for this implementation
/// * `channels` - Count of channels of the image, only 3 and 4 is supported, alpha position, and channels order does not matter
/// * `threading_policy` - Threads usage policy
/// * `edge_mode` - Edge handling mode, *Kernel clip* is not supported!
///
/// # Panics
/// Panic is stride/width/height/channel configuration do not match provided
pub fn fast_gaussian_next_f32(
    bytes: &mut [f32],
    width: u32,
    height: u32,
    radius: u32,
    channels: FastBlurChannels,
    threading_policy: ThreadingPolicy,
    edge_mode: EdgeMode,
) {
    impl_margin_call!(
        f32,
        channels,
        edge_mode,
        bytes,
        width * channels.get_channels() as u32,
        width,
        height,
        radius,
        threading_policy
    );
}

/// Performs gaussian approximation on the image.
///
/// Fast gaussian approximation for f16 image.
/// This is also a VERY fast approximation, however producing more pleasant results than stack blur, or first level of approximation.
/// Approximation based on binomial filter.
/// O(1) complexity.
///
/// * `stride` - Lane length, default is width * channels_count if not aligned
/// * `width` - Width of the image
/// * `height` - Height of the image
/// * `radius` - Almost any radius is supported, in real world radius > 300 is too big for this implementation
/// * `channels` - Count of channels of the image, only 3 and 4 is supported, alpha position, and channels order does not matter
/// * `threading_policy` - Threads usage policy
/// * `edge_mode` - Edge handling mode, *Kernel clip* is not supported!
///
/// # Panics
/// Panic is stride/width/height/channel configuration do not match provided
pub fn fast_gaussian_next_f16(
    bytes: &mut [u16],
    width: u32,
    height: u32,
    radius: u32,
    channels: FastBlurChannels,
    threading_policy: ThreadingPolicy,
    edge_mode: EdgeMode,
) {
    impl_margin_call!(
        half::f16,
        channels,
        edge_mode,
        unsafe { std::mem::transmute(bytes) },
        width * channels.get_channels() as u32,
        width,
        height,
        radius,
        threading_policy
    );
}

/// Performs gaussian approximation on the image in linear color space
///
/// This is fast approximation that first converts in linear colorspace, performs blur and converts back,
/// operation will be performed in f32 so its cost is significant
/// Approximation based on binomial filter.
/// O(1) complexity.
///
/// * `stride` - Lane length, default is width * channels_count if not aligned
/// * `width` - Width of the image
/// * `height` - Height of the image
/// * `radius` - Almost any reasonable radius is supported
/// * `channels` - Count of channels of the image, only 3 and 4 is supported, alpha position, and channels order does not matter
/// * `threading_policy` - Threads usage policy
/// * `transfer_function` - Transfer function in linear colorspace
/// * `edge_mode` - Edge handling mode, *Kernel clip* is not supported!
///
/// # Panics
/// Panic is stride/width/height/channel configuration do not match provided
pub fn fast_gaussian_next_in_linear(
    in_place: &mut [u8],
    stride: u32,
    width: u32,
    height: u32,
    radius: u32,
    channels: FastBlurChannels,
    threading_policy: ThreadingPolicy,
    transfer_function: TransferFunction,
    edge_mode: EdgeMode,
) {
    let mut linear_data: Vec<f32> =
        vec![0f32; width as usize * height as usize * channels.get_channels()];

    let forward_transformer = match channels {
        FastBlurChannels::Plane => plane_to_linear,
        FastBlurChannels::Channels3 => rgb_to_linear,
        FastBlurChannels::Channels4 => rgba_to_linear,
    };

    let inverse_transformer = match channels {
        FastBlurChannels::Plane => linear_to_plane,
        FastBlurChannels::Channels3 => linear_to_rgb,
        FastBlurChannels::Channels4 => linear_to_rgba,
    };

    forward_transformer(
        &in_place,
        stride,
        &mut linear_data,
        width * size_of::<f32>() as u32 * channels.get_channels() as u32,
        width,
        height,
        transfer_function,
    );

    fast_gaussian_next_f32(
        &mut linear_data,
        width,
        height,
        radius,
        channels,
        threading_policy,
        edge_mode,
    );

    inverse_transformer(
        &linear_data,
        width * size_of::<f32>() as u32 * channels.get_channels() as u32,
        in_place,
        stride,
        width,
        height,
        transfer_function,
    );
}