leopard_vec 0.1.0

A high-performance parallelized vector container with deferred execution for bulk parallel operations
Documentation
# Leopard Vec


[![Crates.io](https://img.shields.io/crates/v/leopard_vec.svg)](https://crates.io/crates/leopard_vec)
[![Documentation](https://docs.rs/leopard_vec/badge.svg)](https://docs.rs/leopard_vec)
[![License](https://img.shields.io/crates/l/leopard_vec.svg)](LICENSE)

A high-performance parallelized vector container library for Rust with deferred execution.

## Overview


Leopard Vec provides `LVec`, a parallel vector container that records operations and executes them in a single bulk parallel pass. This design minimizes thread pool creation overhead by batching all operations together, making it ideal for compute-intensive workloads.

## Key Features


- **Deferred Execution**: All operations are recorded between `q.start()` and `q.end()`, then executed in one parallel batch
- **Type-Agnostic Queue**: A single `LQueue` can manage `LVec<T>` of different types (u32, f64, etc.)
- **SIMD-Style Masking**: Boolean masks with blend, select, and masked operations
- **Operator Overloading**: Natural syntax with `+`, `-`, `*`, `/` operators
- **Dependency Graph**: Operations are automatically ordered based on data dependencies
- **Zero-Copy Where Possible**: Uses `Arc` for efficient data sharing

## Installation


Add to your `Cargo.toml`:

```toml
[dependencies]
leopard_vec = "0.1.0"
```

## Quick Start


```rust
use leopard_vec::{LQueue, LVec, LMask};

fn main() {
    // Create a queue
    let q = LQueue::new();

    // Create vectors (not yet initialized)
    let x: LVec<f64> = q.lvec_with_capacity(1000);
    let y: LVec<f64> = q.lvec_with_capacity(1000);

    // Start recording operations
    q.start();

    // All operations are recorded, not executed
    let x = x.fill_with(|i| i as f64);
    let y = y.fill_with(|i| (i * 2) as f64);
    let z = &x * &y + &x;  // Operator overloading works!

    // Execute all operations in one parallel batch
    q.end();

    // Retrieve results
    let result = z.materialize().unwrap();
    println!("z[0..5] = {:?}", &result[0..5]);
}
```

## API Overview


### LQueue


The operation queue that records and executes operations.

```rust
let q = LQueue::new();

// Create vectors
let vec: LVec<f64> = q.lvec();                    // Default capacity (128)
let vec: LVec<f64> = q.lvec_with_capacity(1000);  // Custom capacity

// Recording session
q.start();           // Begin recording
// ... operations ...
q.end();             // Execute all recorded operations

q.is_recording();    // Check if currently recording
```

### LVec Operations


All operations must be called between `q.start()` and `q.end()`.

#### Initialization


```rust
let a = vec.fill(42.0);                    // Fill with constant
let b = vec.fill_with(|i| i as f64);       // Fill with closure
```

#### Transformation


```rust
let mapped = a.map(|i, val| val * 2.0);    // Transform each element

let branched = a.map_where(
    |i, val| *val > 10.0,   // Condition
    |i, val| val * 2.0,     // If true
    |i, val| val + 1.0,     // If false
);
```

#### Arithmetic Operators


```rust
let sum = &a + &b;
let diff = &a - &b;
let prod = &a * &b;
let quot = &a / &b;
```

#### Masking Operations


```rust
let mask = LMask::from_fn(len, |i| i >= 5);

let blended = a.blend(&b, &mask);          // a where false, b where true
let selected = LVec::select(&mask, &a, &b); // Same as blend
let applied = a.masked_apply(&mask, |i, v| v * 2.0);
let filled = a.masked_fill(&mask, 999.0);
```

### LMask


Boolean masks for conditional operations.

```rust
// Creation
let mask = LMask::new(len, true);           // All true
let mask = LMask::from_fn(len, |i| i % 2 == 0);  // Pattern

// Logical operations
let and = &mask_a & &mask_b;
let or = &mask_a | &mask_b;
let xor = &mask_a ^ &mask_b;
let not = !&mask_a;

// Inspection
mask.len();
mask.as_slice();
mask[index];
```

### Retrieving Results


After `q.end()`, use `materialize()` to get the computed data:

```rust
if let Some(data) = result.materialize() {
    println!("{:?}", &data[0..10]);
}
```

## How It Works


1. **Recording Phase**: Between `q.start()` and `q.end()`, operations create "pending" `LVec` instances and push operation descriptors to the queue.

2. **Dependency Analysis**: The queue builds a dependency graph to determine execution order.

3. **Parallel Execution**: At `q.end()`, operations are executed level-by-level. Each operation uses Rayon's `into_par_iter()` for parallel element-wise computation.

4. **Result Retrieval**: `materialize()` returns the computed `Arc<Vec<T>>` for any pending `LVec`.

## Performance Benefits


- **Minimized Thread Pool Overhead**: One parallel execution context instead of many
- **Optimized Scheduling**: Dependency-aware execution order
- **Memory Efficiency**: Arc-based sharing avoids unnecessary copies
- **Bulk Operations**: Better cache utilization through batched execution

## Requirements


- Rust 1.70+
- Rayon 1.8+

## License


This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.

### Attribution Requirement


If you use this library in your project, you must include attribution in your documentation. Example:

```
This project uses leopard_vec by Majid Abdelilah
https://github.com/MajidAbdelilah/Leopard_rust
```

## Author


**Majid Abdelilah** - [GitHub](https://github.com/MajidAbdelilah)

## Contributing


Contributions are welcome! Please open an issue or submit a pull request.