1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! LDPC belief propagation decoders.
//!
//! This module provides several implementations of a LDPC decoders using belief
//! propagation (the sum-product algorithm). The implementations differ in
//! details about their numerical algorithms, data types and message passing
//! schedules.

use crate::sparse::SparseMatrix;

pub mod arithmetic;
pub mod factory;
pub mod flooding;
pub mod horizontal_layered;

/// Generic LDPC decoder.
///
/// This trait is used to form LDPC decoder trait objects, abstracting over the
/// internal implementation decoder.
pub trait LdpcDecoder: std::fmt::Debug + Send {
    /// Decodes a codeword.
    ///
    /// The parameters are the LLRs for the received codeword and the maximum
    /// number of iterations to perform. If decoding is successful, the function
    /// returns an `Ok` containing the (hard decision) on the decoded codeword
    /// and the number of iterations used in decoding. If decoding is not
    /// successful, the function returns an `Err` containing the hard decision
    /// on the final decoder LLRs (which still has some bit errors) and the
    /// number of iterations used in decoding (which is equal to
    /// `max_iterations`).
    fn decode(
        &mut self,
        llrs: &[f64],
        max_iterations: usize,
    ) -> Result<DecoderOutput, DecoderOutput>;
}

/// LDPC decoder output.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct DecoderOutput {
    /// Decoded codeword.
    ///
    /// Contains the hard decision bits of the decoded codeword.
    pub codeword: Vec<u8>,
    /// Number of iterations.
    ///
    /// Number of iterations used in decoding.
    pub iterations: usize,
}

/// LDPC decoder message.
///
/// This represents a message used by the flooding belief propagation
/// decoder. It is used for messages received by the nodes.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
pub struct Message<T> {
    /// Message source.
    ///
    /// Contains the index of the variable node or check node that sent the
    /// message.
    pub source: usize,
    /// Value.
    ///
    /// Contains the value of the message.
    pub value: T,
}

/// LDPC decoder outgoing message.
///
/// This represents a message used by the flooding belief propagation
/// decoder. It is used for messages sent by the nodes.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
pub struct SentMessage<T> {
    /// Message destination.
    ///
    /// Contains the index of the variable node or check node to which the
    /// message is addressed.
    pub dest: usize,
    /// Value.
    ///
    /// Contains the value of the message.
    pub value: T,
}

#[derive(Debug, Clone, Eq, PartialEq, Default, Hash)]
struct Messages<T> {
    per_destination: Box<[Box<[Message<T>]>]>,
}

impl<T: Default> Messages<T> {
    fn from_iter<I, J, B>(iter: I) -> Messages<T>
    where
        I: Iterator<Item = J>,
        J: Iterator<Item = B>,
        B: core::borrow::Borrow<usize>,
    {
        Messages {
            per_destination: iter
                .map(|i| {
                    i.map(|j| Message {
                        source: *j.borrow(),
                        value: T::default(),
                    })
                    .collect::<Vec<_>>()
                    .into_boxed_slice()
                })
                .collect::<Vec<_>>()
                .into_boxed_slice(),
        }
    }

    fn send(&mut self, source: usize, destination: usize, value: T) {
        let message = self.per_destination[destination]
            .iter_mut()
            .find(|m| m.source == source)
            .expect("message for source not found");
        message.value = value;
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Default, Hash)]
struct SentMessages<T> {
    per_source: Box<[Box<[SentMessage<T>]>]>,
}

impl<T: Default> SentMessages<T> {
    fn from_iter<I, J, B>(iter: I) -> SentMessages<T>
    where
        I: Iterator<Item = J>,
        J: Iterator<Item = B>,
        B: core::borrow::Borrow<usize>,
    {
        SentMessages {
            per_source: iter
                .map(|i| {
                    i.map(|j| SentMessage {
                        dest: *j.borrow(),
                        value: T::default(),
                    })
                    .collect::<Vec<_>>()
                    .into_boxed_slice()
                })
                .collect::<Vec<_>>()
                .into_boxed_slice(),
        }
    }

    #[allow(dead_code)]
    fn send(&mut self, source: usize, destination: usize, value: T) {
        let message = self.per_source[source]
            .iter_mut()
            .find(|m| m.dest == destination)
            .expect("message for destination not found");
        message.value = value;
    }
}

fn check_llrs<T, F>(h: &SparseMatrix, llrs: &[T], hard_decision: F) -> bool
where
    T: Copy,
    F: Fn(T) -> bool,
{
    // Check if hard decision on LLRs satisfies the parity check equations
    !(0..h.num_rows()).any(|r| h.iter_row(r).filter(|&&c| hard_decision(llrs[c])).count() % 2 == 1)
}

fn hard_decisions<T, F>(llrs: &[T], hard_decision: F) -> Vec<u8>
where
    T: Copy,
    F: Fn(T) -> bool,
{
    llrs.iter()
        .map(|&llr| u8::from(hard_decision(llr)))
        .collect()
}