lc3_ensemble/ast.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
//! Components relating to the abstract syntax trees (ASTs)
//! used in representing assembly instructions.
//!
//! These components together are used to construct...
//! - [`asm::AsmInstr`] (a data structure holding an assembly source code instruction),
//! - [`asm::Directive`] (a data structure holding an assembly source code directive),
//! - and [`sim::SimInstr`] (a data structure holding a bytecode instruction).
pub mod asm;
pub mod sim;
use std::fmt::Write as _;
use std::num::TryFromIntError;
use offset_base::OffsetBacking;
/// A register. Must be between 0 and 7.
///
/// This `Reg` struct can either be constructed by accessing an enum variant,
/// or by using [`Reg::try_from`].
///
/// ## Examples
///
/// ```text
/// AND R0, R0, #0
/// ~~ ~~
/// ADD R1, R1, R0
/// ~~ ~~ ~~
/// LD R2, VALUE
/// ~~
/// NOT R1, R2
/// ~~ ~~
/// ```
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Reg {
/// The 0th register in the register file.
R0 = 0,
/// The 1st register in the register file.
R1 = 1,
/// The 2nd register in the register file.
R2 = 2,
/// The 3rd register in the register file.
R3 = 3,
/// The 4th register in the register file.
R4 = 4,
/// The 5th register in the register file.
R5 = 5,
/// The 6th register in the register file.
R6 = 6,
/// The 7th register in the register file.
R7 = 7
}
impl Reg {
/// Gets the register number of this [`Reg`]. This is always between 0 and 7.
pub fn reg_no(self) -> u8 {
self as u8
}
}
impl std::fmt::Display for Reg {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// formatting parameters should have no effect here
write!(f, "R{}", self.reg_no())
}
}
impl From<Reg> for usize {
// Used for indexing the reg file in [`ast::Sim`].
fn from(value: Reg) -> Self {
usize::from(value.reg_no())
}
}
impl TryFrom<u8> for Reg {
type Error = TryFromIntError;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
0 => Ok(Reg::R0),
1 => Ok(Reg::R1),
2 => Ok(Reg::R2),
3 => Ok(Reg::R3),
4 => Ok(Reg::R4),
5 => Ok(Reg::R5),
6 => Ok(Reg::R6),
7 => Ok(Reg::R7),
// HACKy, but there's no other way to create this error
_ => u8::try_from(256).map(|_| unreachable!("should've been TryFromIntError")),
}
}
}
/// A condition code (used for `BR`), must be between 0 and 7.
///
/// The condition codes are listed below:
///
/// | instruction | code (bin) |
/// |---------------|------------|
/// | `NOP` | `000` |
/// | `BRn` | `100` |
/// | `BRz` | `010` |
/// | `BRnz` | `110` |
/// | `BRp` | `001` |
/// | `BRnp` | `101` |
/// | `BRzp` | `011` |
/// | `BR`, `BRnzp` | `111` |
///
pub type CondCode = u8;
/// A value representing a signed offset or a signed immediate value.
///
/// `N` indicates the maximum bit size of this offset/immediate value.
///
/// ## Examples
///
/// `IOffset<5>` is used to represent `ADD`/`AND`'s imm5 operand:
///
/// ```text
/// AND R0, R0, #0
/// ~~
/// ADD R1, R1, #1
/// ~~
/// ```
///
/// They are also used for numeric register or PC offset values:
/// ```text
/// BR x-F
/// ~~~
/// JSR #99
/// ~~~
/// LD R0, #10
/// ~~~
/// LDR R0, R0, #9
/// ~~
/// ```
pub type IOffset<const N: u32> = Offset<i16, N>;
/// An unsigned 8-bit trap vector (used for `TRAP`).
///
/// ## Examples
///
/// ```text
/// TRAP x25
/// ~~~
/// ```
pub type TrapVect8 = Offset<u16, 8>;
/// A value representing either an immediate value or a register.
///
/// This is used to handle cases where an operand can be either
/// an immediate value or a register (e.g., in `AND` or `ADD`).
///
/// ## Examples
/// ```text
/// AND R0, R0, #0
/// AND R1, R1, R1
/// ADD R2, R2, #2
/// ADD R3, R3, R3
/// ^^
/// ```
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum ImmOrReg<const N: u32> {
#[allow(missing_docs)]
Imm(IOffset<N>),
#[allow(missing_docs)]
Reg(Reg)
}
impl<const N: u32> std::fmt::Display for ImmOrReg<N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ImmOrReg::Imm(imm) => imm.fmt(f),
ImmOrReg::Reg(reg) => reg.fmt(f),
}
}
}
/// A value representing an offset or an immediate value.
///
/// The `OFF` type represents the backing type of this offset.
/// The signedness of this offset type is dependent on the signedness of the `OFF` type:
/// - `Offset<i16, _>`: signed offset (also aliased as [`IOffset`])
/// - `Offset<u16, _>`: unsigned offset
///
/// `N` indicates the maximum bit size of this offset/immediate value.
///
/// ## Examples
///
/// - `Offset<i16, 5>` is used to represent `ADD`/`AND`'s imm5 operand.
/// See [`IOffset`] for more examples of its use.
/// - `Offset<u16, 8>` is used to represent the `trapvect8` operand of the `TRAP` instruction.
/// See [`TrapVect8`] for more examples of its use.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub struct Offset<OFF, const N: u32>(OFF);
impl<OFF: std::fmt::Display, const N: u32> std::fmt::Display for Offset<OFF, N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_char('#')?;
self.0.fmt(f)
}
}
impl<OFF: std::fmt::Binary, const N: u32> std::fmt::Binary for Offset<OFF, N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_char('b')?;
self.0.fmt(f)
}
}
impl<OFF: std::fmt::LowerHex, const N: u32> std::fmt::LowerHex for Offset<OFF, N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_char('x')?;
self.0.fmt(f)
}
}
impl<OFF: std::fmt::UpperHex, const N: u32> std::fmt::UpperHex for Offset<OFF, N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_char('x')?;
self.0.fmt(f)
}
}
/// The errors that can result from calling [`Offset::new`].
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum OffsetNewErr {
/// The provided offset cannot fit an unsigned integer of the given bitsize.
CannotFitUnsigned(u32),
/// The provided offset cannot fit a signed integer of the given bitsize.
CannotFitSigned(u32)
}
impl std::fmt::Display for OffsetNewErr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
OffsetNewErr::CannotFitUnsigned(n) => write!(f, "value is too big for unsigned {n}-bit integer"),
OffsetNewErr::CannotFitSigned(n) => write!(f, "value is too big for signed {n}-bit integer"),
}
}
}
impl std::error::Error for OffsetNewErr {}
impl crate::err::Error for OffsetNewErr {
fn help(&self) -> Option<std::borrow::Cow<str>> {
use std::borrow::Cow;
let error = match self {
OffsetNewErr::CannotFitUnsigned(n) => Cow::from(format!("the range for an unsigned {n}-bit integer is [0, {}]", (1 << n) - 1)),
OffsetNewErr::CannotFitSigned(n) => Cow::from(format!("the range for a signed {n}-bit integer is [{}, {}]", (-1) << (n - 1), (1 << (n - 1)) - 1)),
};
Some(error)
}
}
mod offset_base {
use super::OffsetNewErr;
/// Any type that could store a value for [`Offset`].
///
/// [`Offset`]: super::Offset
pub trait OffsetBacking: Copy + Eq {
/// How many bits are contained within this backing.
///
/// For example, `u16` has 16 bits and thus BITS == 16.
const BITS: u32;
/// Truncates the given value to the provided `bit_size`.
///
/// This bit size is always known to be less than BITS.
fn truncate(self, bit_size: u32) -> Self;
/// The error to raise if a given value doesn't match
/// its provided value when truncated to a given `bit_size`.
fn does_not_fit_error(bit_size: u32) -> OffsetNewErr;
}
macro_rules! impl_offset_backing_for_ints {
($($Int:ty: $Err:ident),*) => {
$(
impl OffsetBacking for $Int {
const BITS: u32 = Self::BITS;
fn truncate(self, bit_size: u32) -> Self {
(self << (Self::BITS - bit_size)) >> (Self::BITS - bit_size)
}
fn does_not_fit_error(bit_size: u32) -> OffsetNewErr {
OffsetNewErr::$Err(bit_size)
}
}
)*
}
}
impl_offset_backing_for_ints! {
u16: CannotFitUnsigned,
i16: CannotFitSigned
}
}
impl<OFF: OffsetBacking, const N: u32> Offset<OFF, N> {
/// Creates a new offset value.
/// This must fit within `N` bits of the representation, otherwise an error is raised.
///
/// # Examples
///
/// ```
/// # use lc3_ensemble::ast::Offset;
/// #
/// // Signed:
/// let neg5 = Offset::<i16, 5>::new(-5);
/// let pos15 = Offset::<i16, 5>::new(15);
/// let pos16 = Offset::<i16, 5>::new(16);
/// assert!(neg5.is_ok());
/// assert!(pos15.is_ok());
/// assert!(pos16.is_err());
///
/// // Unsigned:
/// let pos15 = Offset::<u16, 5>::new(15);
/// let pos16 = Offset::<u16, 5>::new(16);
/// let pos32 = Offset::<u16, 5>::new(32);
/// assert!(pos15.is_ok());
/// assert!(pos16.is_ok());
/// assert!(pos32.is_err());
/// ```
///
/// # Panics
///
/// This will panic if `N` is larger than the offset backing (e.g., for backing `u16`, larger than 16).
///
/// ```should_panic
/// # use lc3_ensemble::ast::Offset;
/// #
/// let oh_no = Offset::<i16, 17>::new(18);
/// ```
pub fn new(n: OFF) -> Result<Self, OffsetNewErr> {
assert!(N <= OFF::BITS, "bit size {N} exceeds size of backing ({})", OFF::BITS);
match n == n.truncate(N) {
true => Ok(Offset(n)),
false => Err(OFF::does_not_fit_error(N)),
}
}
/// Creates a new offset by extending the first N bits of the integer,
/// and discarding the rest.
///
/// The extension is considered sign-extended if the offset's backing is signed,
/// and zero-extended if the offset's backing is unsigned.
///
/// # Examples
///
/// ```
/// # use lc3_ensemble::ast::Offset;
/// #
/// // Signed:
/// let neg5 = Offset::<i16, 5>::new_trunc(-5); // 0b11111111111_11011
/// let pos15 = Offset::<i16, 5>::new_trunc(15); // 0b00000000000_01111
/// let pos16 = Offset::<i16, 5>::new_trunc(16); // 0b00000000000_10000
/// assert_eq!(neg5.get(), -5); // 0b11011
/// assert_eq!(pos15.get(), 15); // 0b01111
/// assert_eq!(pos16.get(), -16); // 0b10000
///
/// // Unsigned:
/// let pos15 = Offset::<u16, 5>::new_trunc(15); // 0b00000000000_01111
/// let pos16 = Offset::<u16, 5>::new_trunc(16); // 0b00000000000_10000
/// let pos32 = Offset::<u16, 5>::new_trunc(32); // 0b00000000001_00000
/// assert_eq!(pos15.get(), 15); // 01111
/// assert_eq!(pos16.get(), 16); // 10000
/// assert_eq!(pos32.get(), 0); // 00000
/// ```
///
/// # Panics
///
/// This will panic if `N` is larger than the offset backing (e.g., for backing `u16`, larger than 16).
///
/// ```should_panic
/// # use lc3_ensemble::ast::Offset;
/// #
/// let oh_no = Offset::<i16, 17>::new_trunc(18);
/// ```
pub fn new_trunc(n: OFF) -> Self {
assert!(N <= OFF::BITS, "bit size {N} exceeds size of backing ({})", OFF::BITS);
Self(n.truncate(N))
}
/// Gets the value of the offset.
pub fn get(&self) -> OFF {
self.0
}
}
/// An offset or a label.
///
/// This is used to represent [`PCOffset`] operands
/// (such as the `PCOffset9` operand in `LD` and `ST`
/// and the `PCOffset11` operand in `JSR`).
///
/// During the first assembly pass, the label is resolved and
/// replaced with a regular [`Offset`] value.
///
/// ## Examples
/// ```text
/// LD R2, VALUE
/// ~~~~~
/// BRz END
/// ~~~
/// BR #-99
/// ~~~~
/// JSR SUBROUTINE
/// ~~~~~~~~~~
/// ```
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum PCOffset<OFF, const N: u32> {
#[allow(missing_docs)]
Offset(Offset<OFF, N>),
#[allow(missing_docs)]
Label(Label)
}
impl<OFF, const N: u32> std::fmt::Display for PCOffset<OFF, N>
where Offset<OFF, N>: std::fmt::Display
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
PCOffset::Offset(off) => off.fmt(f),
PCOffset::Label(label) => label.fmt(f),
}
}
}
/// A label.
///
/// This struct stores the name of the label (accessible by the `name` field)
/// and the source code span indicating where the label is located in assembly source code.
///
/// # Examples
/// ```text
/// .orig x3000
/// AND R0, R0, #0
/// LD R2, VALUE
/// ~~~~~
/// LOOP:
/// ~~~~
/// NOT R1, R2
/// ADD R1, R1, #1
/// ADD R1, R1, R0
/// BRz END
/// ~~~
/// ADD R0, R0, #1
/// BR LOOP
/// ~~~~
/// END: HALT
/// ~~~
/// VALUE: .fill #8464
/// ~~~~~
/// .end
/// ```
#[derive(Clone, PartialEq, Eq, Hash, Debug, Default)]
pub struct Label {
/// The label's identifier
pub name: String,
/// The start of the label in assembly source code.
///
/// Since name stores the length of the string,
/// we don't need to store the whole span.
///
/// This saves like 8 bytes of space on a 64-bit machine, so ya know
start: usize
}
impl Label {
/// Creates a new label.
pub fn new(name: String, span: std::ops::Range<usize>) -> Self {
debug_assert_eq!(span.start + name.len(), span.end, "span should have the same length as name");
Label { name, start: span.start }
}
/// Returns the span of the label in assembly source code.
pub fn span(&self) -> std::ops::Range<usize> {
self.start .. (self.start + self.name.len())
}
}
impl std::fmt::Display for Label {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.name.fmt(f)
}
}