lc3_ensemble/asm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
//! Assembling assembly source ASTs into object files.
//!
//! This module is used to convert source ASTs (`Vec<`[`Stmt`]`>`) into object files
//! that can be executed by the simulator.
//!
//! The assembler module notably consists of:
//! - [`assemble`] and [`assemble_debug`]: The main functions which assemble the statements into an object file.
//! - [`SymbolTable`]: a struct holding the symbol table, which stores location information for labels after the first assembler pass
//! - [`ObjectFile`]: a struct holding the object file, which can be loaded into the simulator and executed
//!
//! [`Stmt`]: crate::ast::asm::Stmt
pub mod encoding;
use std::collections::hash_map::Entry;
use std::collections::{BTreeMap, HashMap};
use std::ops::Range;
use logos::Span;
use crate::ast::asm::{AsmInstr, Directive, Stmt, StmtKind};
use crate::ast::sim::SimInstr;
use crate::ast::{IOffset, ImmOrReg, Offset, OffsetNewErr, PCOffset, Reg};
use crate::err::ErrSpan;
/// Assembles a assembly source code AST into an object file.
///
/// This function assembles the source AST *without* including debug symbols
/// in the object file.
/// See [`SymbolTable`] for more details about debug symbols.
///
/// # Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::assemble;
///
/// let src = "
/// .orig x3000
/// LABEL: HALT
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// let obj_file = assemble(ast);
/// assert!(obj_file.is_ok());
///
/// // Symbol table doesn't exist in object file:
/// let obj_file = obj_file.unwrap();
/// assert!(obj_file.symbol_table().is_none());
/// ```
pub fn assemble(ast: Vec<Stmt>) -> Result<ObjectFile, AsmErr> {
let sym = SymbolTable::new(&ast, None)?;
ObjectFile::new(ast, sym, false)
}
/// Assembles a assembly source code AST into an object file.
///
/// This function assembles the source AST *and* includes debug symbols
/// in the object file.
/// See [`SymbolTable`] for more details about debug symbols.
///
/// # Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::assemble_debug;
///
/// let src = "
/// .orig x3000
/// LABEL: HALT
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// let obj_file = assemble_debug(ast, src);
/// assert!(obj_file.is_ok());
///
/// // Symbol table does exist in object file:
/// let obj_file = obj_file.unwrap();
/// assert!(obj_file.symbol_table().is_some());
/// ```
pub fn assemble_debug(ast: Vec<Stmt>, src: &str) -> Result<ObjectFile, AsmErr> {
let sym = SymbolTable::new(&ast, Some(src))?;
ObjectFile::new(ast, sym, true)
}
/// Kinds of errors that can occur from assembling given assembly code.
///
/// See [`AsmErr`] for this error type with span information included.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum AsmErrKind {
/// Cannot determine address of label (pass 1).
UndetAddrLabel,
/// Cannot determine address of instruction (pass 2).
UndetAddrStmt,
/// There was an `.orig` but no corresponding `.end` (pass 1).
UnclosedOrig,
/// There was an `.end` but no corresonding `.orig` (pass 1).
UnopenedOrig,
/// There was an `.orig` opened after another `.orig` (pass 1).
OverlappingOrig,
/// There were multiple labels of the same name (pass 1).
OverlappingLabels,
/// Block wraps memory (pass 2).
WrappingBlock,
/// Block writes to IO memory region (pass 2).
BlockInIO,
/// There are blocks that overlap ranges of memory (pass 2).
OverlappingBlocks,
/// Creating the offset to replace a label caused overflow (pass 2).
OffsetNewErr(OffsetNewErr),
/// Cannot find the offset with an external label (pass 2).
OffsetExternal,
/// Label did not have an assigned address (pass 2).
CouldNotFindLabel,
}
impl std::fmt::Display for AsmErrKind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::UndetAddrLabel => f.write_str("cannot determine address of label"),
Self::UndetAddrStmt => f.write_str("cannot determine address of statement"),
Self::UnclosedOrig => f.write_str(".orig directive was never closed"),
Self::UnopenedOrig => f.write_str(".end does not have associated .orig"),
Self::OverlappingOrig => f.write_str("cannot have an .orig inside another region"),
Self::OverlappingLabels => f.write_str("label was defined multiple times"),
Self::WrappingBlock => f.write_str("block wraps around in memory"),
Self::BlockInIO => f.write_str("cannot write code into memory-mapped IO region"),
Self::OverlappingBlocks => f.write_str("regions overlap in memory"),
Self::OffsetNewErr(e) => e.fmt(f),
Self::OffsetExternal => f.write_str("cannot use external label here"),
Self::CouldNotFindLabel => f.write_str("label could not be found"),
}
}
}
/// Error from assembling given assembly code.
#[derive(Debug)]
pub struct AsmErr {
/// The value with a span.
pub kind: AsmErrKind,
/// The span in the source associated with this value.
pub span: ErrSpan
}
impl AsmErr {
/// Creates a new [`AsmErr`].
pub fn new<E: Into<ErrSpan>>(kind: AsmErrKind, span: E) -> Self {
AsmErr { kind, span: span.into() }
}
}
impl std::fmt::Display for AsmErr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.kind.fmt(f)
}
}
impl std::error::Error for AsmErr {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match &self.kind {
AsmErrKind::OffsetNewErr(e) => Some(e),
_ => None
}
}
}
impl crate::err::Error for AsmErr {
fn span(&self) -> Option<crate::err::ErrSpan> {
Some(self.span.clone())
}
fn help(&self) -> Option<std::borrow::Cow<str>> {
match &self.kind {
AsmErrKind::UndetAddrLabel => Some("try moving this label inside of an .orig/.end block".into()),
AsmErrKind::UndetAddrStmt => Some("try moving this statement inside of an .orig/.end block".into()),
AsmErrKind::UnclosedOrig => Some("try adding an .end directive at the end of this block".into()),
AsmErrKind::UnopenedOrig => Some("try adding an .orig directive at the beginning of this block".into()),
AsmErrKind::OverlappingOrig => Some("try adding an .end directive at the end of the outer .orig block".into()),
AsmErrKind::OverlappingLabels => Some("labels must be unique within a file, try renaming one of the labels".into()),
AsmErrKind::OverlappingBlocks => Some("try moving the starting address of one of these regions".into()),
AsmErrKind::WrappingBlock => Some("user code typically starts at x3000 and is short enough to not wrap memory".into()),
AsmErrKind::BlockInIO => Some("try not doing that".into()),
AsmErrKind::OffsetNewErr(e) => e.help(),
AsmErrKind::OffsetExternal => Some("external labels cannot be an offset operand; try creating a .fill LABEL directive".into()),
AsmErrKind::CouldNotFindLabel => Some("try adding this label before an instruction or directive".into()),
}
}
}
const IO_START: u16 = 0xFE00;
/// A mapping from line numbers to memory addresses (and vice-versa).
///
/// This is implemented as a sorted list of contiguous blocks, consisting of:
/// - The first source line number of the block, and
/// - The memory addresses of the block
///
/// For example,
/// ```text
/// 0 | .orig x3000
/// 1 | AND R0, R0, #0
/// 2 | ADD R0, R0, #5
/// 3 | HALT
/// 4 | .end
/// 5 |
/// 6 | .orig x4000
/// 7 | .blkw 5
/// 8 | .fill x9F9F
/// 9 | .end
/// ```
/// maps to `LineSymbolMap({1: [0x3000, 0x3001, 0x3002], 7: [0x4000, 0x4005]})`.
///
/// This data structure holds several invariants:
/// - Line numbers should never overlap.
/// - In a given block, the addresses should be in ascending order
/// (this has to occur in a well-formed program because regions constitute contiguous, non-overlapping parts of memory).
///
/// If these invariants are not held, invalid behavior can occur.
#[derive(PartialEq, Eq)]
struct LineSymbolMap(BTreeMap<usize, Vec<u16>>);
impl LineSymbolMap {
/// Creates a new line symbol table.
///
/// This takes an expanded list of line-memory address mappings and condenses it into
/// the internal [`LineSymbolMap`] format.
///
/// For example,
///
/// `[None, Some(0x3000), Some(0x3001), Some(0x3002), None, None, None, Some(0x4000), Some(0x4005)]`
/// condenses to `{1: [0x3000, 0x3001, 0x3002], 7: [0x4000, 0x4005]}`.
///
/// For a given block of contiguous `Some`s, the memory addresses should be sorted and accesses
/// through `LineSymbolMap`'s methods assume the values are sorted.
///
/// If they are not sorted, incorrect behaviors may occur. Skill issue.
fn new(lines: Vec<Option<u16>>) -> Option<Self> {
let mut blocks = BTreeMap::new();
let mut current = None;
for (i, line) in lines.into_iter().enumerate() {
match line {
Some(addr) => current.get_or_insert_with(Vec::new).push(addr),
None => if let Some(bl) = current.take() {
blocks.insert(i - bl.len(), bl);
},
}
}
Self::from_blocks(blocks)
}
fn from_blocks(blocks: impl IntoIterator<Item=(usize, Vec<u16>)>) -> Option<Self> {
let mut bl: Vec<_> = blocks.into_iter().collect();
bl.sort_by_key(|&(l, _)| l);
// Check not overlapping:
let not_overlapping = bl.windows(2).all(|win| {
let [(ls, lb), (rs, _)] = win else { unreachable!() };
ls + lb.len() <= *rs
});
match not_overlapping {
true => {
// Check every individual block is sorted:
let sorted = bl.iter().all(|(_, lb)| {
lb.windows(2).all(|win| win[0] <= win[1])
});
sorted.then(|| Self(bl.into_iter().collect()))
}
false => None,
}
}
/// Gets the memory address associated with this line, if it is present in the line symbol mapping.
fn get(&self, line: usize) -> Option<u16> {
// Find the block such that `line` falls within the source line number range of the block.
let (start, block) = self.0.range(..=line).next_back()?;
// Access the memory address.
block.get(line - *start).copied()
}
/// Gets the source line number associated with this memory address, if it is present in the symbol table.
fn find(&self, addr: u16) -> Option<usize> {
self.0.iter()
.find_map(|(start, words)| {
// Find the block that contains the given address,
// and then find the line index once it's found.
words.binary_search(&addr)
.ok()
.map(|o| start + o)
})
}
/// Gets an iterable representing the block mappings.
fn block_iter(&self) -> impl Iterator<Item=(usize, &[u16])> + '_ {
self.0.iter()
.map(|(&i, words)| (i, words.as_slice()))
}
/// Gets an iterable representing the mapping of line numbers to addresses.
fn iter(&self) -> impl Iterator<Item=(usize, u16)> + '_ {
self.block_iter()
.flat_map(|(i, words)| {
words.iter()
.enumerate()
.map(move |(off, &addr)| (i + off, addr))
})
}
}
impl std::fmt::Debug for LineSymbolMap {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_map()
.entries(self.iter().map(|(i, v)| (i, Addr(v))))
.finish()
}
}
/// Struct holding the source string and contains helpers
/// to index lines and to query position information from a source string.
#[derive(PartialEq, Eq)]
pub struct SourceInfo {
/// The source code.
src: String,
/// The index of each new line in source code.
nl_indices: Vec<usize>
}
impl std::fmt::Debug for SourceInfo {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SourceInfo")
.field("nl_indices", &self.nl_indices)
.finish_non_exhaustive()
}
}
impl SourceInfo {
/// Computes the source info from a given string.
pub fn new(src: &str) -> Self {
Self::from_string(src.to_string())
}
fn from_string(src: String) -> Self {
// Index where each new line appears.
let nl_indices: Vec<_> = src
.match_indices('\n')
.map(|(i, _)| i)
.chain([src.len()])
.collect();
Self { src, nl_indices }
}
/// Returns the entire source.
pub fn source(&self) -> &str {
&self.src
}
/// Counts the number of lines in the source string.
pub fn count_lines(&self) -> usize {
// The first line, plus every line after (delimited by a new line)
self.nl_indices.len()
}
/// Gets the character range for the provided line, including any whitespace.
///
/// This returns None if line is not in the interval `[0, number of lines)`.
fn raw_line_span(&self, line: usize) -> Option<Range<usize>> {
// Implementation detail:
// number of lines = self.nl_indices.len() + 1
if !(0..self.count_lines()).contains(&line) {
return None;
};
let &end = self.nl_indices.get(line)
.unwrap_or_else(|| self.nl_indices.last().unwrap());
let start = match line == 0 {
false => self.nl_indices[line - 1] + 1,
true => 0,
};
Some(start..end)
}
/// Gets the character range for the provided line, excluding any whitespace.
///
/// This returns None if line is not in the interval `[0, number of lines)`.
pub fn line_span(&self, line: usize) -> Option<Range<usize>> {
let Range { mut start, mut end } = self.raw_line_span(line)?;
// shift line span by trim
let line = &self.src[start..end];
let end_trimmed = line.trim_end();
end -= line.len() - end_trimmed.len();
let line = end_trimmed;
start += line.len() - line.trim_start().len();
Some(start..end)
}
/// Reads a line from source.
///
/// This returns None if line is not in the interval `[0, number of lines)`.
pub fn read_line(&self, line: usize) -> Option<&str> {
self.line_span(line).map(|r| &self.src[r])
}
/// Gets the line number of the current position.
fn get_line(&self, index: usize) -> usize {
self.nl_indices.partition_point(|&start| start < index)
}
/// Calculates the line and character number for a given character index.
///
/// If the index exceeds the length of the string,
/// the line number is given as the last line and the character number
/// is given as the number of characters after the start of the line.
pub fn get_pos_pair(&self, index: usize) -> (usize, usize) {
let lno = self.get_line(index);
let Range { start: lstart, .. } = self.raw_line_span(lno)
.or_else(|| self.raw_line_span(self.nl_indices.len()))
.unwrap_or(0..0);
let cno = index - lstart;
(lno, cno)
}
}
impl From<&'_ str> for SourceInfo {
fn from(value: &'_ str) -> Self {
Self::new(value)
}
}
impl From<String> for SourceInfo {
fn from(value: String) -> Self {
Self::from_string(value)
}
}
#[derive(PartialEq, Eq, Clone, Copy, Default)]
struct SymbolData {
addr: u16,
src_start: usize,
external: bool
}
impl SymbolData {
/// Calculates the source range of this symbol, given the name of the label.
fn span(&self, label: &str) -> Range<usize> {
self.src_start .. (self.src_start + label.len())
}
}
/// Debug symbols.
#[derive(PartialEq, Eq, Debug)]
struct DebugSymbols {
/// A mapping from each line with a statement in the source to an address.
line_map: LineSymbolMap,
/// Information about the source.
src_info: SourceInfo
}
impl DebugSymbols {
pub fn lookup_line(&self, line: usize) -> Option<u16> {
self.line_map.get(line)
}
pub fn rev_lookup_line(&self, addr: u16) -> Option<usize> {
self.line_map.find(addr)
}
/// Links debug symbols.
pub fn link(mut a: Self, b: Self) -> Result<Self, AsmErr> {
// TODO: This kinda just tacks files together into a single source.
// Once object files have support for multiple ASM references, this should be cleaner.
let lines = a.src_info.count_lines();
// B doesn't overlap with A because ObjectFile check
a.line_map.0.extend({
b.line_map.0.into_iter()
.map(|(k, v)| (k + lines, v))
});
a.src_info = SourceInfo::from_string(a.src_info.src + "\n" + &b.src_info.src);
Ok(a)
}
}
/// The symbol table created in the first assembler pass
/// that encodes source code mappings to memory addresses in the object file.
///
/// The symbol table consists of:
/// - A mapping from source code labels to memory addresses.
/// - A mapping from source code line numbers to memory addresses (if debug symbols are enabled).
/// - The source text (if debug symbols are enabled).
///
/// Here is a table of the mappings that the symbol table provides:
///
/// | from ↓, to → | label | memory address | source line/span |
/// |----------------|------------------------------------|-------------------------------|-----------------------------------|
/// | label | - | [`SymbolTable::lookup_label`] | [`SymbolTable::get_label_source`] |
/// | memory address | [`SymbolTable::rev_lookup_label`] | - | [`SymbolTable::rev_lookup_line`] |
/// | source line | none | [`SymbolTable::lookup_line`] | - |
///
/// # Debug symbols
///
/// Debug symbols are optional data added to this symbol table which can help users debug their code.
///
/// Without debug symbols, the symbol table only consists of mappings from labels to spans (and vice-versa).
/// These are used to translate labels in source code to addresses during the assembly process.
/// After the completion of this assembly process, the [`SymbolTable`] is dropped and is not part of the resultant
/// [`ObjectFile`].
///
/// However, with debug symbols, this information persists in the resultant [`ObjectFile`], allowing
/// the label mappings to be accessed during simulation time. Additionally, more information from the source
/// text is available during simulation time:
/// - Mappings from source code line numbers to memory addresses
/// - Source code text (which grants access to line contents from a given line number; see [`SourceInfo`] for more details)
#[derive(PartialEq, Eq)]
pub struct SymbolTable {
/// A mapping from label to address and span of the label.
label_map: HashMap<String, SymbolData>,
/// Relocation table.
rel_map: HashMap<u16, String>,
/// Debug symbols. If None, there were no debug symbols provided.
debug_symbols: Option<DebugSymbols>,
}
impl SymbolTable {
/// Creates a new symbol table.
///
/// This performs the first assembler pass, calculating the memory address of
/// labels at each provided statement.
///
/// If a `src` argument is provided, debug symbols are also computed for the symbol table.
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = "
/// .orig x3000
/// LABEL: HALT
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// // without debug symbols
/// let sym = SymbolTable::new(&ast, None).unwrap();
/// assert_eq!(sym.lookup_label("LABEL"), Some(0x3000));
/// assert_eq!(sym.lookup_line(2), None);
///
/// // with debug symbols
/// let sym = SymbolTable::new(&ast, Some(src)).unwrap();
/// assert_eq!(sym.lookup_label("LABEL"), Some(0x3000));
/// assert_eq!(sym.lookup_line(2), Some(0x3000));
/// ```
pub fn new(stmts: &[Stmt], src: Option<&str>) -> Result<Self, AsmErr> {
struct Cursor {
// The current location counter.
lc: u16,
// True if 0x10000.
overflowed: bool,
// The span of the .orig directive.
block_orig: Span,
}
impl Cursor {
fn new(lc: u16, block_orig: Span) -> Self {
Self { lc, overflowed: false, block_orig }
}
/// Attempts to shift the LC forward by n word locations,
/// failing if that would cause the LC to pass the IO region or
/// overflow memory.
fn shift(&mut self, n: u16) -> Result<(), AsmErrKind> {
if n == 0 { return Ok(()); }
match (self.overflowed, self.lc.checked_add(n)) {
(true, _) => Err(AsmErrKind::WrappingBlock),
(false, Some(new_lc)) if new_lc > IO_START => Err(AsmErrKind::BlockInIO),
(false, Some(new_lc)) => {
self.lc = new_lc;
Ok(())
},
(false, None) => {
let lc = std::mem::take(&mut self.lc);
self.overflowed = true;
// If aligns exactly, it can't be considered wrapping over
Err(match lc == n.wrapping_neg() {
true => AsmErrKind::BlockInIO,
false => AsmErrKind::WrappingBlock,
})
}
}
}
}
fn add_label(
labels: &mut HashMap<String, SymbolData>,
label: &crate::ast::Label,
addr: u16,
external: bool
) -> Result<(), AsmErr> {
match labels.entry(label.name.to_uppercase()) {
// Two labels with different addresses. Conflict.
Entry::Occupied(e) if e.get().addr != addr => {
let span1 = e.get().span(e.key());
let span2 = label.span();
Err(AsmErr::new(AsmErrKind::OverlappingLabels, [span1, span2]))
},
// Two labels with same address. No conflict.
Entry::Occupied(_) => Ok(()),
// New label.
Entry::Vacant(e) => {
e.insert(SymbolData { addr, src_start: label.span().start, external });
Ok(())
}
}
}
let mut cursor: Option<Cursor> = None;
let mut label_map: HashMap<String, SymbolData> = HashMap::new();
let mut rel_map = HashMap::new();
let mut debug_sym = src.map(|s| {
let src_info = SourceInfo::new(s);
(vec![None; src_info.count_lines()], src_info)
});
for stmt in stmts {
// Add labels if they exist
if !stmt.labels.is_empty() {
// If cursor does not exist, that means we're not in an .orig block,
// so these labels don't have a known location
let Some(cur) = cursor.as_ref() else {
let spans = stmt.labels.iter()
.map(|label| label.span())
.collect::<Vec<_>>();
return Err(AsmErr::new(AsmErrKind::UndetAddrLabel, spans));
};
// Add labels
for label in &stmt.labels {
add_label(&mut label_map, label, cur.lc, false)?;
}
}
// Handle special directives:
match &stmt.nucleus {
StmtKind::Directive(Directive::Orig(addr)) => match cursor {
Some(cur) => return Err(AsmErr::new(AsmErrKind::OverlappingOrig, [cur.block_orig, stmt.span.clone()])),
None => { cursor.replace(Cursor::new(addr.get(), stmt.span.clone())); },
},
StmtKind::Directive(Directive::End) => match cursor {
Some(_) => { cursor.take(); },
None => return Err(AsmErr::new(AsmErrKind::UnopenedOrig, stmt.span.clone())),
},
StmtKind::Directive(Directive::External(label)) => {
// Arbitrarily chose 0 as a placeholder for externals
add_label(&mut label_map, label, 0, true)?;
}
StmtKind::Directive(Directive::Fill(PCOffset::Label(label))) => {
let label_text = label.name.to_uppercase();
if let Some(SymbolData { external: true, .. }) = label_map.get(&label_text) {
let Some(cur) = cursor.as_ref() else {
return Err(AsmErr::new(AsmErrKind::UndetAddrStmt, stmt.span.clone()));
};
rel_map.insert(cur.lc, label_text);
}
},
_ => {}
};
// If we're keeping track of the line counter currently (i.e., are inside of a .orig block):
if let Some(cur) = &mut cursor {
// Debug symbol:
// Calculate which source code line is associated with the instruction the LC is currently pointing to
// and add the mapping from line to instruction address.
if let Some((lines, s)) = &mut debug_sym {
if !matches!(stmt.nucleus, StmtKind::Directive(Directive::Orig(_) | Directive::End)) {
let line_index = s.get_line(stmt.span.start);
lines[line_index].replace(cur.lc);
}
}
// Shift the LC forward
match &stmt.nucleus {
StmtKind::Instr(_) => cur.shift(1),
StmtKind::Directive(d) => cur.shift(d.word_len()),
}.map_err(|e| AsmErr::new(e, stmt.span.clone()))?
}
}
if let Some(cur) = cursor {
return Err(AsmErr::new(AsmErrKind::UnclosedOrig, cur.block_orig));
}
let debug_symbols = debug_sym.map(|(lines, src_info)| DebugSymbols {
line_map: LineSymbolMap::new(lines)
.unwrap_or_else(|| {
unreachable!("line symbol map's invariants should have been upheld during symbol table pass")
}),
src_info,
});
Ok(SymbolTable { label_map, rel_map, debug_symbols })
}
/// Gets the memory address of a given label (if it exists).
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = "
/// .orig x3000
/// LOOP:
/// ADD R0, R0, #1
/// BR LOOP
/// LOOP2:
/// ADD R0, R0, #2
/// BR LOOP2
/// LOOP3:
/// ADD R0, R0, #3
/// BR LOOP3
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// let sym = SymbolTable::new(&ast, None).unwrap();
/// assert_eq!(sym.lookup_label("LOOP"), Some(0x3000));
/// assert_eq!(sym.lookup_label("LOOP2"), Some(0x3002));
/// assert_eq!(sym.lookup_label("LOOP3"), Some(0x3004));
/// assert_eq!(sym.lookup_label("LOOP_DE_LOOP"), None);
/// ```
pub fn lookup_label(&self, label: &str) -> Option<u16> {
self.label_map.get(&label.to_uppercase()).map(|sym_data| sym_data.addr)
}
/// Gets the label at a given memory address (if it exists).
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = "
/// .orig x3000
/// LOOP:
/// ADD R0, R0, #1
/// BR LOOP
/// LOOP2:
/// ADD R0, R0, #2
/// BR LOOP2
/// LOOP3:
/// ADD R0, R0, #3
/// BR LOOP3
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// let sym = SymbolTable::new(&ast, None).unwrap();
/// assert_eq!(sym.rev_lookup_label(0x3000), Some("LOOP"));
/// assert_eq!(sym.rev_lookup_label(0x3002), Some("LOOP2"));
/// assert_eq!(sym.rev_lookup_label(0x3004), Some("LOOP3"));
/// assert_eq!(sym.rev_lookup_label(0x2110), None);
/// ```
pub fn rev_lookup_label(&self, addr: u16) -> Option<&str> {
let (label, _) = self.label_map.iter()
.find(|&(_, sym_data)| sym_data.addr == addr)?;
Some(label)
}
/// Gets the source span of a given label (if it exists).
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = "
/// .orig x3000
/// LOOPY:
/// ADD R0, R0, #1
/// BR LOOPY
/// .end
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// let sym = SymbolTable::new(&ast, None).unwrap();
/// assert_eq!(sym.get_label_source("LOOPY"), Some(21..26));
/// assert_eq!(sym.get_label_source("LOOP_DE_LOOP"), None);
/// ```
pub fn get_label_source(&self, label: &str) -> Option<Range<usize>> {
self.label_map.get(label)
.map(|data| data.span(label))
}
/// Gets the address of a given source line.
///
/// If debug symbols are not enabled, this unconditionally returns `None`.
/// Note that each address is mapped to at most one source code line.
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = " ;; 0
/// .orig x3000 ;; 1
/// LOOP: ;; 2
/// ADD R0, R0, #1 ;; 3
/// BR LOOP ;; 4
/// .fill x9999 ;; 5
/// .blkw 10 ;; 6
/// LOOP2: ;; 7
/// ADD R0, R0, #3 ;; 8
/// BR LOOP3 ;; 9
/// .end ;; 10
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// // Debug symbols required:
/// let sym = SymbolTable::new(&ast, Some(src)).unwrap();
/// assert_eq!(sym.lookup_line(0), None);
/// assert_eq!(sym.lookup_line(1), None);
/// assert_eq!(sym.lookup_line(2), None);
/// assert_eq!(sym.lookup_line(3), Some(0x3000));
/// assert_eq!(sym.lookup_line(4), Some(0x3001));
/// assert_eq!(sym.lookup_line(5), Some(0x3002));
/// assert_eq!(sym.lookup_line(6), Some(0x3003));
/// assert_eq!(sym.lookup_line(7), None);
/// assert_eq!(sym.lookup_line(8), Some(0x300D));
/// assert_eq!(sym.lookup_line(9), Some(0x300E));
/// assert_eq!(sym.lookup_line(10), None);
/// ```
pub fn lookup_line(&self, line: usize) -> Option<u16> {
self.debug_symbols.as_ref()?.lookup_line(line)
}
/// Gets the source line of a given memory address (if it exists.)
///
/// The result can be converted into a source span (range of characters encompassed by the instruction)
/// using [`SymbolTable::source_info`] and [`SourceInfo::line_span`].
///
/// If debug symbols are not enabled, this unconditionally returns `None`.
/// Note that each source code line is mapped to at most one address.
///
/// ## Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// use lc3_ensemble::asm::SymbolTable;
///
/// let src = " ;; 0
/// .orig x3000 ;; 1
/// LOOP: ;; 2
/// ADD R0, R0, #1 ;; 3
/// BR LOOP ;; 4
/// .fill x9999 ;; 5
/// .blkw 10 ;; 6
/// LOOP2: ;; 7
/// ADD R0, R0, #3 ;; 8
/// BR LOOP3 ;; 9
/// .end ;; 10
/// ";
/// let ast = parse_ast(src).unwrap();
///
/// // Debug symbols required:
/// let sym = SymbolTable::new(&ast, Some(src)).unwrap();
/// assert_eq!(sym.rev_lookup_line(0x3000), Some(3));
/// assert_eq!(sym.rev_lookup_line(0x3001), Some(4));
/// assert_eq!(sym.rev_lookup_line(0x3002), Some(5));
/// assert_eq!(sym.rev_lookup_line(0x3003), Some(6));
/// assert_eq!(sym.rev_lookup_line(0x3004), None);
/// assert_eq!(sym.rev_lookup_line(0x3005), None);
/// assert_eq!(sym.rev_lookup_line(0x3006), None);
/// assert_eq!(sym.rev_lookup_line(0x3007), None);
/// assert_eq!(sym.rev_lookup_line(0x3008), None);
/// assert_eq!(sym.rev_lookup_line(0x3009), None);
/// assert_eq!(sym.rev_lookup_line(0x300A), None);
/// assert_eq!(sym.rev_lookup_line(0x300B), None);
/// assert_eq!(sym.rev_lookup_line(0x300C), None);
/// assert_eq!(sym.rev_lookup_line(0x300D), Some(8));
/// assert_eq!(sym.rev_lookup_line(0x300E), Some(9));
/// assert_eq!(sym.rev_lookup_line(0x300F), None);
/// ```
pub fn rev_lookup_line(&self, addr: u16) -> Option<usize> {
self.debug_symbols.as_ref()?.rev_lookup_line(addr)
}
/// Reads the source info from this symbol table (if debug symbols are enabled).
pub fn source_info(&self) -> Option<&SourceInfo> {
self.debug_symbols.as_ref().map(|ds| &ds.src_info)
}
/// Gets an iterable of the mapping from labels to addresses.
pub fn label_iter(&self) -> impl Iterator<Item=(&str, u16, bool)> + '_ {
self.label_map.iter()
.map(|(label, sym_data)| (&**label, sym_data.addr, sym_data.external))
}
/// Gets an iterable of the mapping from lines to addresses.
///
/// This iterator will be empty if debug symbols were not enabled.
pub fn line_iter(&self) -> impl Iterator<Item=(usize, u16)> + '_ {
self.debug_symbols.iter()
.flat_map(|s| s.line_map.iter())
}
}
impl std::fmt::Debug for SymbolTable {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
struct ClosureMap<R, F: Fn() -> R>(F);
impl<K, V, R, F> std::fmt::Debug for ClosureMap<R, F>
where K: std::fmt::Debug,
V: std::fmt::Debug,
R: IntoIterator<Item=(K, V)>,
F: Fn() -> R
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_map()
.entries((self.0)())
.finish()
}
}
f.debug_struct("SymbolTable")
.field("label_map", &ClosureMap(|| {
self.label_map.iter()
.map(|(k, data @ SymbolData { addr, .. })| {
(k, (Addr(*addr), data.span(k)))
})
}))
.field("debug_symbols", &self.debug_symbols)
.finish()
}
}
/// Replaces a [`PCOffset`] value with an [`Offset`] value by calculating the offset from a given label
/// (if this `PCOffset` represents a label).
fn replace_pc_offset<const N: u32>(off: PCOffset<i16, N>, pc: u16, sym: &SymbolTable) -> Result<IOffset<N>, AsmErr> {
match off {
PCOffset::Offset(off) => Ok(off),
PCOffset::Label(label) => {
// TODO: use sym.lookup_label
match sym.label_map.get(&label.name.to_uppercase()) {
Some(SymbolData { external: true, .. }) => Err(AsmErr::new(AsmErrKind::OffsetExternal, label.span())),
Some(SymbolData { addr, .. }) => {
IOffset::new(addr.wrapping_sub(pc) as i16)
.map_err(|e| AsmErr::new(AsmErrKind::OffsetNewErr(e), label.span()))
}
None => Err(AsmErr::new(AsmErrKind::CouldNotFindLabel, label.span())),
}
},
}
}
/// Checks if two ranges overlap.
///
/// This assumes (start <= end) for both ranges.
fn ranges_overlap<T: Ord>(a: Range<T>, b: Range<T>) -> bool {
let Range { start: a_start, end: a_end } = a;
let Range { start: b_start, end: b_end } = b;
// Range not overlapping: a_start >= b_end || b_start >= a_end
// This is just the inverse.
a_start < b_end && b_start < a_end
}
impl AsmInstr {
/// Converts an ASM instruction into a simulator instruction ([`SimInstr`])
/// by resolving offsets and erasing aliases.
///
/// Parameters:
/// - `pc`: PC increment
/// - `sym`: The symbol table
pub fn into_sim_instr(self, pc: u16, sym: &SymbolTable) -> Result<SimInstr, AsmErr> {
match self {
AsmInstr::ADD(dr, sr1, sr2) => Ok(SimInstr::ADD(dr, sr1, sr2)),
AsmInstr::AND(dr, sr1, sr2) => Ok(SimInstr::AND(dr, sr1, sr2)),
AsmInstr::BR(cc, off) => Ok(SimInstr::BR(cc, replace_pc_offset(off, pc, sym)?)),
AsmInstr::JMP(br) => Ok(SimInstr::JMP(br)),
AsmInstr::JSR(off) => Ok(SimInstr::JSR(ImmOrReg::Imm(replace_pc_offset(off, pc, sym)?))),
AsmInstr::JSRR(br) => Ok(SimInstr::JSR(ImmOrReg::Reg(br))),
AsmInstr::LD(dr, off) => Ok(SimInstr::LD(dr, replace_pc_offset(off, pc, sym)?)),
AsmInstr::LDI(dr, off) => Ok(SimInstr::LDI(dr, replace_pc_offset(off, pc, sym)?)),
AsmInstr::LDR(dr, br, off) => Ok(SimInstr::LDR(dr, br, off)),
AsmInstr::LEA(dr, off) => Ok(SimInstr::LEA(dr, replace_pc_offset(off, pc, sym)?)),
AsmInstr::NOT(dr, sr) => Ok(SimInstr::NOT(dr, sr)),
AsmInstr::RET => Ok(SimInstr::JMP(Reg::R7)),
AsmInstr::RTI => Ok(SimInstr::RTI),
AsmInstr::ST(sr, off) => Ok(SimInstr::ST(sr, replace_pc_offset(off, pc, sym)?)),
AsmInstr::STI(sr, off) => Ok(SimInstr::STI(sr, replace_pc_offset(off, pc, sym)?)),
AsmInstr::STR(sr, br, off) => Ok(SimInstr::STR(sr, br, off)),
AsmInstr::TRAP(vect) => Ok(SimInstr::TRAP(vect)),
AsmInstr::NOP(off) => Ok(SimInstr::BR(0b000, replace_pc_offset(off, pc, sym)?)),
AsmInstr::GETC => Ok(SimInstr::TRAP(Offset::new_trunc(0x20))),
AsmInstr::OUT => Ok(SimInstr::TRAP(Offset::new_trunc(0x21))),
AsmInstr::PUTC => Ok(SimInstr::TRAP(Offset::new_trunc(0x21))),
AsmInstr::PUTS => Ok(SimInstr::TRAP(Offset::new_trunc(0x22))),
AsmInstr::IN => Ok(SimInstr::TRAP(Offset::new_trunc(0x23))),
AsmInstr::PUTSP => Ok(SimInstr::TRAP(Offset::new_trunc(0x24))),
AsmInstr::HALT => Ok(SimInstr::TRAP(Offset::new_trunc(0x25))),
}
}
}
impl Directive {
/// How many words this directive takes up in memory.
fn word_len(&self) -> u16 {
match self {
Directive::Orig(_) => 0,
Directive::Fill(_) => 1,
Directive::Blkw(n) => n.get(),
Directive::Stringz(s) => s.len() as u16 + 1, // lex should assure that s + 1 <= 65535
Directive::End => 0,
Directive::External(_) => 0,
}
}
}
/// An object file.
///
/// This is the final product after assembly source code is fully assembled.
/// This can be loaded in the simulator to run the assembled code.
#[derive(Debug, PartialEq, Eq)]
pub struct ObjectFile {
/// A mapping of each block's address to its corresponding data.
///
/// Invariants:
/// - The blocks are sorted in order.
/// - Blocks cannot wrap around in memory.
/// - Blocks cannot write into xFE00-xFFFF.
/// - As a corollary, block's length must fit in a `u16`.
block_map: BTreeMap<u16, Vec<Option<u16>>>,
/// Debug symbols.
sym: Option<SymbolTable>
}
impl ObjectFile {
/// Creates an empty object file.
pub fn empty() -> Self {
ObjectFile { block_map: BTreeMap::new(), sym: None }
}
/// Creates a new object file from an assembly AST and a symbol table.
fn new(ast: Vec<Stmt>, sym: SymbolTable, debug: bool) -> Result<Self, AsmErr> {
/// A singular block which represents a singular region in an object file.
struct ObjBlock {
/// Starting address of the block.
start: u16,
/// The words in the block.
words: Vec<Option<u16>>,
/// Span of the orig statement.
///
/// Used for error diagnostics in this function.
orig_span: Range<usize>
}
impl ObjBlock {
fn range(&self) -> Range<u16> {
// Assumes no overflow and there cannot be more than u16::MAX words
// Both of these invariants are asserted by `push` and `try_extend`.
self.start .. (self.start + self.words.len() as u16)
}
fn push(&mut self, data: u16) {
self.words.push(Some(data));
}
fn shift(&mut self, n: u16) {
self.words.extend({
std::iter::repeat(None)
.take(usize::from(n))
});
}
/// Writes the assembly for the given directive into the provided object block.
fn write_directive(&mut self, directive: Directive, labels: &SymbolTable) -> Result<(), AsmErr> {
match directive {
Directive::Orig(_) => {},
Directive::Fill(pc_offset) => {
let off = match pc_offset {
PCOffset::Offset(o) => o.get(),
PCOffset::Label(l) => {
labels.lookup_label(&l.name)
.ok_or_else(|| AsmErr::new(AsmErrKind::CouldNotFindLabel, l.span()))?
},
};
self.push(off);
},
Directive::Blkw(n) => self.shift(n.get()),
Directive::Stringz(n) => {
self.extend(n.bytes().map(u16::from));
self.push(0);
},
Directive::End => {},
Directive::External(_) => {},
}
Ok(())
}
}
impl Extend<u16> for ObjBlock {
fn extend<T: IntoIterator<Item = u16>>(&mut self, iter: T) {
self.words.extend(iter.into_iter().map(Some));
}
}
let mut block_map: BTreeMap<u16, ObjBlock> = BTreeMap::new();
// PASS 2
// Holding both the LC and currently writing block
let mut current: Option<(u16, ObjBlock)> = None;
for stmt in ast {
match stmt.nucleus {
StmtKind::Directive(Directive::Orig(off)) => {
debug_assert!(current.is_none());
// Add new working block.
let addr = off.get();
current.replace((addr, ObjBlock { start: addr, orig_span: stmt.span, words: vec![] }));
},
StmtKind::Directive(Directive::End) => {
// The current block is complete, so take it out and append it to the block map.
let Some((_, block)) = current.take() else {
// unreachable (because pass 1 should've found it)
return Err(AsmErr::new(AsmErrKind::UnopenedOrig, stmt.span));
};
// only append if it's not empty:
if block.words.is_empty() { continue; }
// Check for overlap. Note this is probably overengineering:
let m_overlapping = [
block_map.range(..=block.start).next_back(), // previous block
block_map.range(block.start..).next(), // next block
]
.into_iter()
.flatten()
.find(|(_, b)| ranges_overlap(block.range(), b.range()));
// If found overlapping block, raise error:
if let Some((_, overlapping_block)) = m_overlapping {
let span0 = block.orig_span;
let span1 = overlapping_block.orig_span.clone();
let order = match span0.start <= span1.start {
true => [span0, span1],
false => [span1, span0],
};
return Err(AsmErr::new(AsmErrKind::OverlappingBlocks, order));
}
block_map.insert(block.start, block);
},
StmtKind::Directive(Directive::External(_)) => {},
StmtKind::Directive(directive) => {
let Some((lc, block)) = &mut current else {
return Err(AsmErr::new(AsmErrKind::UndetAddrStmt, stmt.span));
};
let wl = directive.word_len();
block.write_directive(directive, &sym)?;
*lc = lc.wrapping_add(wl);
},
StmtKind::Instr(instr) => {
let Some((lc, block)) = &mut current else {
return Err(AsmErr::new(AsmErrKind::UndetAddrStmt, stmt.span));
};
let sim = instr.into_sim_instr(lc.wrapping_add(1), &sym)?;
block.push(sim.encode());
*lc = lc.wrapping_add(1);
},
}
}
let block_map = block_map.into_iter()
.map(|(start, ObjBlock { words, .. })| (start, words))
.collect();
Ok(Self {
block_map,
sym: debug.then_some(sym),
})
}
/// Gets a mutable reference to the value at the given address if defined in the object file.
///
/// If the data is uninitialized, this returns `Some(None)`.
fn get_mut(&mut self, addr: u16) -> Option<&mut Option<u16>> {
let (&start, block) = self.block_map.range_mut(..=addr).next()?;
block.get_mut(addr.wrapping_sub(start) as usize)
}
/// Links two object files, combining them into one.
///
/// The linking algorithm is as follows:
/// - The list of regions in both object files are merged into one.
/// - Overlaps between regions are checked. If any are found, error.
/// - For every symbol in the symbol table, this is added to the new symbol table.
/// - If any symbols appear more than once in different locations (and neither are external), error (duplicate labels).
/// - If any symbols appear more than once in different locations (and one is external), pull out any relocation entries (from `.LINKER_INFO`) for the external and match them.
/// - Merge the remaining relocation table entries.
pub fn link(mut a_obj: Self, b_obj: Self) -> Result<Self, AsmErr> {
let Self { block_map, sym } = b_obj;
// TODOs:
// - Check if conflict checks can be unified with the same conflict checks in ObjectFile::new
// - See if it's possible to encapsulate symbol table's linking
a_obj.block_map.extend(block_map);
let first = a_obj.block_map.iter();
let mut second = a_obj.block_map.iter();
second.next();
if std::iter::zip(first, second).any(|((&a_st, a_bl), (&b_st, b_bl))| {
let ar = a_st .. (a_st + a_bl.len() as u16);
let br = b_st .. (b_st + b_bl.len() as u16);
ranges_overlap(ar, br)
}) {
return Err(AsmErr::new(AsmErrKind::OverlappingBlocks, Vec::<ErrSpan>::new()));
}
// Merge symbol tables:
let mut relocations = vec![];
a_obj.sym = match (a_obj.sym, sym) {
// If we have both symbol tables:
(Some(mut a_sym), Some(b_sym)) => {
let SymbolTable { label_map, rel_map, debug_symbols } = b_sym;
a_sym.debug_symbols = match (a_sym.debug_symbols, debug_symbols) {
(Some(ads), Some(bds)) => Some(DebugSymbols::link(ads, bds)?),
(m_ads, b_ads) => m_ads.or(b_ads)
};
// Cannot overlap due to the above overlapping blocks invariant.
a_sym.rel_map.extend(rel_map);
// For every label in symbol table B:
for (label, sym_data) in label_map {
match a_sym.label_map.entry(label) {
Entry::Occupied(mut e) => {
let &SymbolData { addr: addr1, src_start: _, external: ext1 } = e.get();
let &SymbolData { addr: addr2, src_start: _, external: ext2 } = &sym_data;
match (ext1, ext2) {
// Two external labels
// Rel map entries are preserved, nothing changes.
(true, true) => {},
// One external label
// Bind all of the relocation entries corresponding to the external symbol
// to the linked symbol
(true, false) | (false, true) => {
// The address to link to.
let linked_sym = if ext1 { sym_data } else { *e.get() };
e.insert(linked_sym);
// Split the relocation map to unmatching & matching labels.
let rel_addrs;
(rel_addrs, a_sym.rel_map) = a_sym.rel_map.into_iter()
.partition(|(_, v)| v == e.key());
// Add matching labels to the "to relocate later" Vec.
relocations.extend({
rel_addrs.into_keys().map(|addr| (addr, linked_sym.addr))
});
},
// No external labels
// If they point to the same addresses, nothing changes.
// If they point to different addresses, raise conflict.
(false, false) => if addr1 != addr2 {
let a_span = e.get().span(e.key());
let b_span = sym_data.span(e.key());
// TODO: this error does not have correct spans.
return Err(AsmErr::new(AsmErrKind::OverlappingLabels, [a_span, b_span]));
}
}
},
Entry::Vacant(e) => { e.insert(sym_data); },
};
}
Some(a_sym)
},
(ma, mb) => ma.or(mb)
};
for (addr, linked_addr) in relocations {
// TODO: handle case where the address needed is not found
// should really only occur from invalid manipulation of obj file
a_obj.get_mut(addr)
.unwrap_or_else(|| unreachable!("object file should have had address {addr} bound"))
.replace(linked_addr);
}
Ok(a_obj)
}
/// Get an iterator over all of the blocks of the object file.
pub(crate) fn block_iter(&self) -> impl Iterator<Item=(u16, &[Option<u16>])> {
self.block_map.iter()
.map(|(&addr, block)| (addr, block.as_slice()))
}
/// Gets an iterator over all of the memory locations defined in the object file.
pub fn addr_iter(&self) -> impl Iterator<Item=(u16, Option<u16>)> + '_ {
self.block_iter()
.flat_map(|(addr, block)| {
block.iter()
.enumerate()
.map(move |(i, &v)| (addr.wrapping_add(i as u16), v))
})
}
/// Gets the symbol table if it is present in the object file.
pub fn symbol_table(&self) -> Option<&SymbolTable> {
self.sym.as_ref()
}
}
/// Used for [`std::fmt::Debug`] purposes.
#[repr(transparent)]
struct Addr(u16);
impl std::fmt::Debug for Addr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "x{:04X}", self.0)
}
}
#[cfg(test)]
mod tests {
use std::fmt::Write;
use crate::asm::encoding::TextFormat;
use crate::asm::AsmErrKind;
use crate::parse::parse_ast;
use super::encoding::{BinaryFormat, ObjFileFormat};
use super::{assemble_debug, AsmErr, ObjectFile};
fn assemble_src(src: &str) -> Result<ObjectFile, AsmErr> {
let ast = parse_ast(src).unwrap();
assemble_debug(ast, src)
}
#[test]
fn test_region_overlap() {
// Two orig blocks, one after another
let src = "
.orig x3000
HALT
HALT
HALT
HALT
.end
.orig x3002
HALT
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::OverlappingBlocks);
// Two orig blocks, one before another
let src = "
.orig x3002
HALT
.end
.orig x3000
HALT
HALT
HALT
HALT
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::OverlappingBlocks);
// Two orig blocks, one empty
let src = "
.orig x3000
HALT
HALT
HALT
HALT
.end
.orig x3002
.end
";
assemble_src(src).unwrap();
// Two orig blocks, one empty
let src = "
.orig x3002
.end
.orig x3000
HALT
HALT
HALT
HALT
.end
";
assemble_src(src).unwrap();
}
#[test]
fn test_writing_into_io() {
// write empty blocks
let src = "
.orig xFE00
.end
";
assemble_src(src).unwrap();
let src = "
.orig xFE02
.end
";
assemble_src(src).unwrap();
// write actual block
let src = "
.orig xFE00
AND R0, R0, #0
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::BlockInIO);
}
#[test]
fn test_big_blocks() {
// big BLKW
let src = "
.orig x3000
.blkw xFFFF
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::WrappingBlock);
// Bunch of .fill:
let mut src = String::from(".orig x0000\n");
for i in 0x0000..=0xFFFF {
writeln!(src, ".fill x{i:04X}").unwrap();
}
writeln!(src, ".end").unwrap();
let obj = assemble_src(&src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::BlockInIO);
// perfectly aligns
let src = "
.orig xFFFF
.blkw 1
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::BlockInIO);
// perfectly aligns 2
let src = "
.orig x3000
.blkw xD000
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::BlockInIO);
// big BLKW
let src = "
.orig x3000
.blkw xFFFF
.blkw xFFFF
.blkw xFFFF
.end
";
let obj = assemble_src(src);
assert_eq!(obj.unwrap_err().kind, AsmErrKind::WrappingBlock);
// perfectly aligns and then does schenanigans
let src = "
.orig x3000
LABEL1 .blkw xD000
.fill x0000
.fill x0001
LABEL2 .fill x0002
.fill x0003
.end
";
// Should error. Don't really care which error.
assemble_src(src).unwrap_err();
}
#[test]
fn test_ser_deser() {
fn assert_obj_equal(deser: &mut ObjectFile, expected: &ObjectFile, m: &str) {
let ds = deser.sym.as_mut()
.and_then(|s| s.debug_symbols.as_mut())
.map(|s| &mut s.src_info.src)
.expect("deserialized object file has no source");
let es = expected.sym.as_ref()
.and_then(|s| s.debug_symbols.as_ref())
.map(|s| &s.src_info.src)
.expect("expected object file has no source");
let ll = ds.trim().lines().map(str::trim);
let rl = es.trim().lines().map(str::trim);
assert!(ll.eq(rl), "lines should have matched");
let mut buf = es.to_string();
std::mem::swap(ds, &mut buf);
assert_eq!(deser, expected, "{m}");
// Revert change
let ds = deser.sym.as_mut()
.and_then(|s| s.debug_symbols.as_mut())
.map(|s| &mut s.src_info.src)
.expect("deserialized object file has no source");
std::mem::swap(ds, &mut buf);
}
let src = "
.orig x3000
AND R0, R0, #0
ADD R0, R0, #15
MINUS_R0 NOT R1, R0
ADD R1, R1, #1
HALT
.end
";
let obj = assemble_src(src).unwrap();
// Binary format
let ser = BinaryFormat::serialize(&obj);
let mut de = BinaryFormat::deserialize(&ser).expect("binary encoding should've been parseable");
assert_obj_equal(&mut de, &obj, "binary encoding could not be roundtripped");
// Text format
let ser = TextFormat::serialize(&obj);
let mut de = TextFormat::deserialize(&ser).expect("text encoding should've been parseable");
assert_obj_equal(&mut de, &obj, "text encoding could not be roundtripped");
}
#[test]
fn test_basic_link() {
let library = "
.orig x5000
ADDER ADD R2, R0, R1
RET
.end
";
let program = "
.external ADDER
.orig x4000
LD R0, A
LD R1, B
LD R3, ADDER_ADDR
JSRR R3
HALT
A .fill 10
B .fill 20
ADDER_ADDR .fill ADDER
.end
";
let lib_obj = assemble_src(library).unwrap();
let prog_obj = assemble_src(program).unwrap();
ObjectFile::link(lib_obj, prog_obj).unwrap();
// TODO: Check...
// - overlapping labels
// - overlapping blocks
// - linking two files with the same external
// - object file encoding w/ linkage
// - using external label in offset operand
}
}