1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
//! Simulating and execution for LC-3 assembly.
//! 
//! This module is focused on executing fully assembled code (i.e., [`ObjectFile`]).
//! 
//! This module consists of:
//! - [`Simulator`]: The struct that simulates assembled code.
//! - [`mem`]: The module handling memory relating to the registers.
//! - [`io`]: The module handling simulator IO.
//! - [`debug`]: The module handling types of breakpoints for the simulator.
//! - [`frame`]: The module handling the frame stack and call frame management.
//! 
//! # Usage
//! 
//! To simulate some code, you need to instantiate a Simulator and load an object file to it:
//! 
//! ```no_run
//! use lc3_ensemble::sim::Simulator;
//! 
//! # let obj_file = panic!("don't actually make an object file");
//! let mut simulator = Simulator::new(Default::default());
//! simulator.load_obj_file(&obj_file);
//! simulator.run().unwrap();
//! ```
//! 
//! ## Flags
//! 
//! Here, we define `simulator` to have the default flags. 
//! We could also configure the simulator by editing the flags. For example,
//! if we wish to enable real HALT, we can edit the flags like so:
//! 
//! ```no_run
//! # use lc3_ensemble::sim::{Simulator, SimFlags};
//! let mut simulator = Simulator::new(SimFlags { use_real_halt: true, ..Default::default() });
//! ```
//! 
//! All of the available flags can be found in [`SimFlags`].
//! 
//! ## Execution
//! 
//! Beyond the basic [`Simulator::run`] (which runs until halting),
//! there are also: 
//! - [`Simulator::step_in`], [`Simulator::step_out`], [`Simulator::step_over`]: manual step-by-step simulation
//! - [`Simulator::run_while`], [`Simulator::run_with_limit`]: more advanced programmatic execution
//! 
//! ```
//! use lc3_ensemble::parse::parse_ast;
//! use lc3_ensemble::asm::assemble;
//! use lc3_ensemble::sim::Simulator;
//! use lc3_ensemble::ast::reg_consts::R0;
//! 
//! let src = "
//!     .orig x3000
//!     AND R0, R0, #0
//!     ADD R0, R0, #1
//!     ADD R0, R0, #1
//!     ADD R0, R0, #1
//!     HALT
//!     .end
//! ";
//! let ast = parse_ast(src).unwrap();
//! let obj_file = assemble(ast).unwrap();
//! 
//! let mut sim = Simulator::new(Default::default());
//! sim.load_obj_file(&obj_file);
//! 
//! // Running step by step:
//! sim.step_in().unwrap();
//! assert_eq!(sim.reg_file[R0].get(), 0);
//! sim.step_in().unwrap();
//! assert_eq!(sim.reg_file[R0].get(), 1);
//! sim.step_in().unwrap();
//! assert_eq!(sim.reg_file[R0].get(), 2);
//! sim.step_in().unwrap();
//! assert_eq!(sim.reg_file[R0].get(), 3);
//! ```
//! 
//! ## Querying State
//! 
//! You can query (or set) a variety of different state values from the simulator.
//! 
//! - If you wish to access the PC, it can simply be done through the `sim.pc` field.
//! - If you wish to access the PSR or MCR, the [`Simulator::psr`] and [`Simulator::mcr`] methods are present to query those values.
//! - If you wish to access the register file, you can access it through the `sim.reg_file` field.
//! 
//! [`RegFile`] holds its values in a [`Word`], which is a memory cell which keeps track of initialization state.
//! Accessing can simply be done with [`Word::get`] and [`Word::set`]:
//! ```
//! use lc3_ensemble::sim::Simulator;
//! use lc3_ensemble::ast::reg_consts::R0;
//! 
//! let mut sim = Simulator::new(Default::default());
//! 
//! sim.reg_file[R0].set(0x1234);
//! assert_eq!(sim.reg_file[R0].get(), 0x1234);
//! ```
//! 
//! - If you wish to access the memory, [`Mem`] provides two pairs of memory access:
//!     - [`Mem::read`] and [`Mem::write`] are used for accesses which should trigger access violations and IO.
//!     - [`Mem::get_raw`] and [`Mem::get_raw_mut`] are used for accesses which directly access the memory.
//! ```
//! use lc3_ensemble::sim::Simulator;
//! 
//! let mut sim = Simulator::new(Default::default());
//! 
//! // Raw memory access:
//! sim.mem.get_raw_mut(0x3000).set(0x5678);
//! assert_eq!(sim.mem.get_raw(0x3000).get(), 0x5678);
//! 
//! // Through read/write:
//! use lc3_ensemble::sim::mem::Word;
//! 
//! assert!(sim.mem.write(0x0000, Word::new_init(0x9ABC), sim.default_mem_ctx()).is_err());
//! assert!(sim.mem.write(0x3000, Word::new_init(0x9ABC), sim.default_mem_ctx()).is_ok());
//! assert!(sim.mem.read(0x0000, sim.default_mem_ctx()).is_err());
//! assert!(sim.mem.read(0x3000, sim.default_mem_ctx()).is_ok());
//! ```
//! 
//! See more details in [`Mem`].
//! 
//! - Other state can be accessed. Consult the [`Simulator`] docs for more information.
//! 
//! ### Frames
//! 
//! The simulator also keeps track of subroutine frame information, accessible on the `frame_stack` field of [`Simulator`].
//! 
//! **If `debug_frames` is not enabled in [`SimFlags`]**, the only information the [`Simulator`] keeps track of
//! is the number of subroutine frames deep the simulator is (via [`FrameStack::len`]):
//! - During a JSR instruction, the frame count increases by 1.
//! - During a RET instruction, the frame count decreases by 1.
//! 
//! **If `debug_frames` is enabled in [`SimFlags`]**, the frame information is significantly extended.
//! The simulator then keeps track of several frame values (such as caller and callee address).
//! These are accessible via the [`FrameStack::frames`] method.
//! 
//! Debug frame information by default includes caller and callee addresses, but can be
//! configured to also include frame pointer and argument information. See the [`frame`]
//! module for details.
//! 
//! ## Debugging with breakpoints
//! 
//! Breakpoints are accessible through the `breakpoints` field on [`Simulator`].
//! 
//! To add a `breakpoint`, simply insert a [`Breakpoint`] and 
//! it will break if its condition is met during all execution functions (except [`Simulator::step_in`]).
//! 
//! ```
//! use lc3_ensemble::parse::parse_ast;
//! use lc3_ensemble::asm::assemble;
//! use lc3_ensemble::sim::Simulator;
//! use lc3_ensemble::sim::debug::Breakpoint;
//! 
//! let src = "
//!     .orig x3000
//!     ADD R0, R0, #0
//!     ADD R0, R0, #1
//!     ADD R0, R0, #2
//!     ADD R0, R0, #3
//!     HALT
//!     .end
//! ";
//! let ast = parse_ast(src).unwrap();
//! let obj_file = assemble(ast).unwrap();
//! 
//! let mut sim = Simulator::new(Default::default());
//! sim.load_obj_file(&obj_file);
//! 
//! // Without breakpoint
//! sim.run().unwrap();
//! assert_eq!(sim.pc, 0x3004);
//! 
//! // With breakpoint
//! sim.reset();
//! sim.load_obj_file(&obj_file);
//! sim.breakpoints.insert(Breakpoint::PC(0x3002));
//! sim.run().unwrap();
//! assert_eq!(sim.pc, 0x3002);
//! ```
//! 
//! ## IO
//! 
//! IO is handled by an [`IODevice`]. When a load or store to a memory-mapped address (0xFE00-0xFFFF) occurs,
//! the IODevice is queried for that data.
//! 
//! The best IO for programmatic uses is [`BufferedIO`], which exposes the IO to [`Vec`] and [`VecDeque`] buffers
//! that can be modified.
//! 
//! If you wish to use the standard I/O (i.e., `stdin`/`stdout`), [`BiChannelIO`] can be used.
//! 
//! ```
//! use lc3_ensemble::parse::parse_ast;
//! use lc3_ensemble::asm::assemble;
//! use lc3_ensemble::sim::Simulator;
//! use lc3_ensemble::sim::io::BufferedIO;
//! use std::sync::Arc;
//! 
//! let src = "
//!     .orig x3000
//!     LOOP:
//!     GETC
//!     PUTC
//!     ADD R0, R0, #0
//!     BRnp LOOP
//!     HALT
//!     .end
//! ";
//! let ast = parse_ast(src).unwrap();
//! let obj_file = assemble(ast).unwrap();
//! 
//! let mut sim = Simulator::new(Default::default());
//! sim.load_obj_file(&obj_file);
//! 
//! let io = BufferedIO::new();
//! let input = Arc::clone(io.get_input());
//! let output = Arc::clone(io.get_output());
//! sim.open_io(io);
//! 
//! input.write().unwrap().extend(b"Hello, World!\0");
//! sim.run().unwrap();
//! 
//! assert_eq!(&*input.read().unwrap(), b"");
//! assert_eq!(&**output.read().unwrap(), b"Hello, World!\0");
//! ```
//! 
//! ## Strictness (experimental)
//! 
//! This simulator also features uninitialized memory access checks (via the `strict` flag).
//! 
//! These strict memory checks verify that unintialized data is not written to the register files, memory, 
//! or other areas that do not expect uninitialized data. Uninitialized data here is defined as
//! data that is unknown as it was never fully set and is dependent on the values the machine was initialized with.
//! 
//! The `strict` flag can currently detect:
//! - Loads of uninitialized data into a register (excluding uninitialized reads from `mem[R6 + offset]`).
//! - Stores of uninitialized data into memory (excluding uninitialized stores to `mem[R6 + offset]` and `.blkw`'d memory).
//! - Stores of uninitialized data into memory-mapped IO
//! - Loads and stores through an uninitialized memory address
//! - Jumping to an uninitialized address (e.g., via `JSRR` or `JMP`)
//! - Jumping to a memory location that is uninitialized
//! - Decoding an instruction from uninitialized data
//! - Setting the PSR to an uninitialized value
//! 
//! Note that this is considered *experimental* as false positives can still occur.
//! Also note that the exceptions for loads and stores of uninitialized data
//! are present to prevent typical value manipulation on the stack or in stored memory
//! from triggering a strictness error.
//! 
//! ```
//! use lc3_ensemble::parse::parse_ast;
//! use lc3_ensemble::asm::assemble;
//! use lc3_ensemble::sim::{Simulator, SimErr};
//! 
//! let src = "
//!     .orig x3000
//!     ADD R0, R0, #0
//!     ADD R0, R0, #15 ;; R0 = 15
//!     HALT
//!     .end
//! ";
//! let ast = parse_ast(src).unwrap();
//! let obj_file = assemble(ast).unwrap();
//! 
//! let mut sim = Simulator::new(Default::default());
//! sim.load_obj_file(&obj_file);
//! sim.flags.strict = true;
//! 
//! // Strictness check detects `R0` was set without first being cleared.
//! assert!(matches!(sim.run(), Err(SimErr::StrictRegSetUninit)));
//! assert_eq!(sim.prefetch_pc(), 0x3000);
//! ```
//! 
//! [`VecDeque`]: std::collections::VecDeque
//! [`Breakpoint`]: self::debug::Breakpoint
pub mod mem;
pub mod io;
pub mod debug;
pub mod frame;

use std::collections::HashSet;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;

use crate::asm::ObjectFile;
use crate::ast::reg_consts::{R6, R7};
use crate::ast::sim::SimInstr;
use crate::ast::ImmOrReg;
use debug::Breakpoint;
use io::*;

use self::frame::{FrameStack, FrameType};
use self::mem::{Mem, MemAccessCtx, RegFile, Word, MachineInitStrategy};

/// Errors that can occur during simulation.
#[derive(Debug)]
pub enum SimErr {
    /// Word was decoded, but the opcode was invalid.
    IllegalOpcode,
    /// Word was decoded, and the opcode is recognized,
    /// but the instruction's format is invalid.
    InvalidInstrFormat,
    /// A privileged instruction was called in user mode.
    PrivilegeViolation,
    /// A supervisor region was accessed in user mode.
    AccessViolation,
    /// Interrupt raised.
    Interrupt(InterruptErr),
    /// A register was loaded with a partially uninitialized value.
    /// 
    /// This will ignore loads from the stack (R6), because it is convention to push registers 
    /// (including uninitialized registers).
    /// This also ignores loads from allocated (`.blkw`) memory in case the program writer
    /// uses those as register stores.

    // IDEA: So currently, the way this is implemented is that LDR Rx, R6, OFF is accepted regardless of initialization.
    // We could make this stricter by keeping track of how much is allocated on the stack.
    StrictRegSetUninit,
    /// Memory was loaded with a partially uninitialized value.
    /// 
    /// This will ignore loads from the stack (R6), because it is convention to push registers 
    /// (including uninitialized registers).
    /// This also ignores loads from allocated (`.blkw`) memory in case the program writer
    /// uses those as register stores.

    // IDEA: See StrictRegSetUninit.
    StrictMemSetUninit,
    /// Data was stored into MMIO with a partially uninitialized value.
    StrictIOSetUninit,
    /// Address to jump to is coming from an uninitialized value.
    StrictJmpAddrUninit,
    /// Address to jump to (which is a subroutine or trap call) is coming from an uninitialized value.
    StrictSRAddrUninit,
    /// Address to read from memory is coming from an uninitialized value.
    StrictMemAddrUninit,
    /// PC is pointing to an uninitialized value.
    StrictPCCurrUninit,
    /// PC was set to an address that has an uninitialized value and will read from it next cycle.
    StrictPCNextUninit,
    /// The PSR was loaded with a partially uninitialized value (by RTI).
    StrictPSRSetUninit,
}
impl std::fmt::Display for SimErr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            SimErr::IllegalOpcode       => f.write_str("simulator executed illegal opcode"),
            SimErr::InvalidInstrFormat  => f.write_str("simulator executed invalid instruction"),
            SimErr::PrivilegeViolation  => f.write_str("privilege violation"),
            SimErr::AccessViolation     => f.write_str("access violation"),
            SimErr::Interrupt(e)        => write!(f, "unhandled interrupt: {e}"),
            SimErr::StrictRegSetUninit  => f.write_str("register was set to uninitialized value (strict mode)"),
            SimErr::StrictMemSetUninit  => f.write_str("tried to write an uninitialized value to memory (strict mode)"),
            SimErr::StrictIOSetUninit   => f.write_str("tried to write an uninitialized value to memory-mapped IO (strict mode)"),
            SimErr::StrictJmpAddrUninit => f.write_str("PC address was set to uninitialized address (strict mode)"),
            SimErr::StrictSRAddrUninit  => f.write_str("Subroutine starts at uninitialized address (strict mode)"),
            SimErr::StrictMemAddrUninit => f.write_str("tried to access memory with an uninitialized address (strict mode)"),
            SimErr::StrictPCCurrUninit  => f.write_str("PC is pointing to uninitialized value (strict mode)"),
            SimErr::StrictPCNextUninit  => f.write_str("PC will point to uninitialized value when this instruction executes (strict mode)"),
            SimErr::StrictPSRSetUninit  => f.write_str("tried to set the PSR to an uninitialized value (strict mode)"),
        }
    }
}
impl std::error::Error for SimErr {}

/// Anything that can cause a step to abruptly fail to finish.
enum StepBreak {
    /// A virtual halt was executed.
    Halt,
    /// A simulation error occurred.
    Err(SimErr),
}
impl From<SimErr> for StepBreak {
    fn from(value: SimErr) -> Self {
        Self::Err(value)
    }
}

/// An interrupt occurred.
/// 
/// See [`Simulator::add_external_interrupt`].
#[derive(Debug)]
pub struct InterruptErr(Box<dyn std::error::Error + Send + Sync + 'static>);
impl InterruptErr {
    /// Creates a new [`InterruptErr`].
    fn new(e: impl std::error::Error + Send + Sync + 'static) -> Self {
        InterruptErr(Box::new(e))
    }

    /// Get the internal error from this interrupt.
    /// 
    /// This can be downcast by the typical methods on `dyn Error`.
    pub fn into_inner(self) -> Box<dyn std::error::Error + Send + Sync + 'static> {
        self.0
    }
}
impl std::fmt::Display for InterruptErr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.fmt(f)
    }
}
impl std::error::Error for InterruptErr {}
impl From<InterruptErr> for SimErr {
    fn from(value: InterruptErr) -> Self {
        SimErr::Interrupt(value)
    }
}
impl From<InterruptErr> for StepBreak {
    fn from(value: InterruptErr) -> Self {
        StepBreak::Err(value.into())
    }
}

#[allow(clippy::type_complexity)]
struct SimInterrupt(Box<dyn Fn(&Simulator) -> Result<(), InterruptErr> + Send + Sync + 'static>);
impl std::fmt::Debug for SimInterrupt {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("SimInterrupt").finish_non_exhaustive()
    }
}

/// Reason for why execution paused if it wasn't due to an error.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default)]
enum PauseCondition {
    /// Program reached a halt.
    Halt,
    /// Program set MCR to off.
    MCROff,
    /// Program hit a breakpoint.
    Breakpoint,
    /// Program hit a tripwire condition.
    Tripwire,
    /// Program hit an error and did not pause successfully.
    #[default]
    Unsuccessful
}

/// Configuration flags for [`Simulator`].
/// 
/// These can be modified after the `Simulator` is created with [`Simulator::new`]
/// and their effects should still apply.
/// 
/// Read the field descriptions for more details.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct SimFlags {
    /// Whether strict mode is enabled.
    /// 
    /// Strict mode adds additional integrity checks to the simulator,
    /// such as verifying initialization state is normal for provided data.
    pub strict: bool,

    /// Whether to use the real HALT trap.
    /// 
    /// There are two implementations of HALT within `Simulator`:
    /// - **virtual HALT**: On execution of `HALT` or `TRAP x25`, the simulator is automatically
    /// halted before executing any true TRAP routine.
    /// - **real HALT**: On execution of `HALT` or `TRAP x25`, the TRAP routine for HALT
    /// implemented in the OS is run and executed as usual.
    /// 
    /// Real HALT is useful for maintaining integrity to the LC-3 ISA, whereas
    /// virtual HALT preserves the state of the machine prior to calling the OS's HALT routine.
    pub use_real_halt: bool,
    
    /// The creation strategy for uninitialized Words.
    /// 
    /// This is used to initialize the `mem` and `reg_file` fields.
    pub machine_init: MachineInitStrategy,

    /// Whether to store debugging information about call frames.
    /// 
    /// This flag only goes into effect after a `Simulator::new` or `Simulator::reset` call.
    pub debug_frames: bool
}
impl Default for SimFlags {
    /// The default flags.
    /// 
    /// They are defined as follows:
    /// - `strict`: false
    /// - `use_real_halt`: false
    /// - `machine_init`: default [`MachineInitStrategy`]
    /// - `debug_frames`: false
    fn default() -> Self {
        Self {
            strict: false,
            use_real_halt: false,
            machine_init: Default::default(),
            debug_frames: false
        }
    }
}

/// Executes assembled code.
#[derive(Debug)]
pub struct Simulator {
    // ------------------ SIMULATION STATE ------------------
    // Calling [`Simulator::reset`] resets these values.

    /// The simulator's memory.
    /// 
    /// Note that this is held in the heap, as it is too large for the stack.
    pub mem: Mem,

    /// The simulator's register file.
    pub reg_file: RegFile,

    /// The program counter.
    pub pc: u16,

    /// The processor status register. See [`PSR`] for more details.
    psr: PSR,

    /// Saved stack pointer (the one currently not in use)
    saved_sp: Word,

    /// The frame stack.
    pub frame_stack: FrameStack,

    /// Allocated blocks in object file.
    /// 
    /// This field keeps track of "allocated" blocks 
    /// (memory written to by instructions or directives like .blkw)
    /// in the current object file.
    /// 
    /// Loading and storing uninitialized data in an allocated block
    /// does not cause strictness errors because we're assuming
    /// the programmer is using those as data stores.
    /// 
    /// This is technically a bit lax, because it lets them write
    /// into instructions but oops.
    alloca: Box<[(u16, u16)]>,

    /// The number of instructions successfully run since this `Simulator` was initialized.
    /// 
    /// This can be set to 0 to reset the counter.
    pub instructions_run: u64,

    /// Indicates whether the PC has been incremented in the fetch stage yet.
    /// 
    /// This is just for error handling purposes. It's used to compute
    /// the PC of the instruction that caused an error. See [`Simulator::prefetch_pc`].
    prefetch: bool,

    /// Indicates the reason why the last execution (via [`Simulator::run_while`] and adjacent)
    /// had paused.
    pause_condition: PauseCondition,

    /// Indicates whether the OS has been loaded.
    os_loaded: bool,

    // ------------------ CONFIG/DEBUG STATE ------------------
    // Calling [`Simulator::reset`] does not reset these values.

    /// Machine control.
    /// If unset, the program stops.
    /// 
    /// This is publicly accessible via a reference through [`Simulator::mcr`].
    mcr: Arc<AtomicBool>,

    /// Configuration settings for the simulator.
    /// 
    /// These are preserved between resets.
    /// 
    /// See [`SimFlags`] for more details on what configuration
    /// settings are available.
    pub flags: SimFlags,

    /// Breakpoints for the simulator.
    pub breakpoints: HashSet<Breakpoint>,

    /// Functions that are run every step that can pause execution of the `Simulator`.
    /// 
    /// When an [`InterruptErr`] is raised, the simulation will raise [`SimErr::Interrupt`],
    /// which can be used to handle the resulting `InterruptErr`.
    external_interrupts: Vec<SimInterrupt>,

}
impl Simulator where Simulator: Send + Sync {}

impl Simulator {
    /// Creates a new simulator with the provided initializers
    /// and with the OS loaded, but without a loaded object file.
    /// 
    /// This also allows providing an MCR atomic which is used by the Simulator.
    fn new_with_mcr(flags: SimFlags, mcr: Arc<AtomicBool>) -> Self {
        let mut filler = flags.machine_init.generator();

        let mut sim = Self {
            mem: Mem::new(&mut filler),
            reg_file: RegFile::new(&mut filler),
            pc: 0x3000,
            psr: PSR::new(),
            saved_sp: Word::new_init(0x3000),
            frame_stack: FrameStack::new(flags.debug_frames),
            alloca: Box::new([]),
            instructions_run: 0,
            prefetch: false,
            pause_condition: Default::default(),
            os_loaded: false,
            mcr,
            flags,
            breakpoints: Default::default(),
            external_interrupts: vec![],
        };

        sim.load_os();
        sim
    }

    /// Creates a new simulator with the provided initializers
    /// and with the OS loaded, but without a loaded object file.
    pub fn new(flags: SimFlags) -> Self {
        Self::new_with_mcr(flags, Arc::default())
    }

    /// Loads and initializes the operating system.
    /// 
    /// Note that this is done automatically with [`Simulator::new`].
    /// 
    /// This will initialize kernel space and create trap handlers,
    /// however it will not load working IO. This can cause IO
    /// traps such as `GETC` and `PUTC` to hang. The only trap that 
    /// is assured to function without IO is `HALT`.
    /// 
    /// To initialize the IO, use [`Simulator::open_io`].
    fn load_os(&mut self) {
        use crate::parse::parse_ast;
        use crate::asm::assemble;
        use std::sync::OnceLock;

        static OS_OBJ_FILE: OnceLock<ObjectFile> = OnceLock::new();
        
        if !self.os_loaded {
            self.mem.io.mcr = Arc::clone(&self.mcr); // load to allow HALT to function

            let obj = OS_OBJ_FILE.get_or_init(|| {
                let os_file = include_str!("os.asm");
                let ast = parse_ast(os_file).unwrap();
                assemble(ast).unwrap()
            });
    
            self.load_obj_file(obj);
            self.os_loaded = true;
        }
    }
    
    /// Resets the simulator.
    /// 
    /// This resets the state of the `Simulator` back to before any execution calls,
    /// while preserving configuration and debug state.
    /// 
    /// Note that this function preserves:
    /// - Flags
    /// - Breakpoints
    /// - External interrupts
    /// - MCR reference (i.e., anything with access to the Simulator's MCR can still control it)
    /// - IO (however, note that it does not reset IO state, which must be manually reset)
    /// 
    /// This also does not reload object files. Any object file data has to be reloaded into the Simulator.
    pub fn reset(&mut self) {
        let mcr = Arc::clone(&self.mcr);
        let flags = self.flags;
        let breakpoints = std::mem::take(&mut self.breakpoints);
        let external_ints = std::mem::take(&mut self.external_interrupts);
        let io = std::mem::take(&mut self.mem.io.inner);

        *self = Simulator::new_with_mcr(flags, mcr);
        self.breakpoints = breakpoints;
        self.external_interrupts = external_ints;
        self.mem.io.inner = io;
    }
    
    /// Sets and initializes the IO handler.
    pub fn open_io<IO: IODevice>(&mut self, io: IO) {
        self.mem.io.inner = io._to_sim_io(io::internals::ToSimIOToken(()));
    }

    /// Closes the IO handler, waiting for it to close.
    pub fn close_io(&mut self) {
        self.open_io(EmptyIO) // the illusion of choice
    }

    /// Loads an object file into this simulator.
    pub fn load_obj_file(&mut self, obj: &ObjectFile) {
        use std::cmp::Ordering;

        let mut alloca = vec![];

        for (start, words) in obj.iter() {
            self.mem.copy_obj_block(start, words);

            // add this block to alloca
            let len = words.len() as u16;
            let end = start.wrapping_add(len);

            match start.cmp(&end) {
                Ordering::Less    => alloca.push((start, len)),
                Ordering::Equal   => {},
                Ordering::Greater => {
                    // push (start..) and (0..end) as blocks
                    alloca.push((start, start.wrapping_neg()));
                    if end != 0 { alloca.push((0, end)) };
                },
            }
        }

        alloca.sort_by_key(|&(start, _)| start);
        self.alloca = alloca.into_boxed_slice();
    }

    /// Sets the condition codes using the provided result.
    fn set_cc(&mut self, result: u16) {
        match (result as i16).cmp(&0) {
            std::cmp::Ordering::Less    => self.psr.set_cc(0b100),
            std::cmp::Ordering::Equal   => self.psr.set_cc(0b010),
            std::cmp::Ordering::Greater => self.psr.set_cc(0b001),
        }
    }

    /// Gets a reference to the PSR.
    pub fn psr(&self) -> &PSR {
        // This is not mutable because editing the PSR can cause crashes to occur if
        // privilege is tampered with during an interrupt.
        &self.psr
    }

    /// Gets a reference to the MCR.
    pub fn mcr(&self) -> &Arc<AtomicBool> {
        // The mcr field is not exposed because that allows someone to swap the MCR
        // with another AtomicBool, which would cause the simulator's MCR
        // to be inconsistent with any other component's 
        &self.mcr
    }

    /// Sets the PC to the given address, raising any errors that occur.
    /// 
    /// The `st_check_mem` parameter indicates whether the data at the PC should be verified in strict mode.
    /// This should be enabled when it is absolutely known that the PC will read from the provided address
    /// on the next cycle.
    /// 
    /// This should be true when this function is used for instructions like `BR` and `JSR` 
    /// and should be false when this function is used to increment PC during fetch.
    fn set_pc(&mut self, addr_word: Word, st_check_mem: bool) -> Result<(), SimErr> {
        let addr = addr_word.get_if_init(self.flags.strict, SimErr::StrictJmpAddrUninit)?;
        if self.flags.strict && st_check_mem {
            // Check next memory value is initialized:
            if !self.mem.read(addr, self.default_mem_ctx())?.is_init() {
                return Err(SimErr::StrictPCNextUninit);
            }
        }
        self.pc = addr;
        Ok(())
    }
    /// Adds an offset to the PC.
    /// 
    /// See [`Simulator::set_pc`] for details about `st_check_mem`.
    fn offset_pc(&mut self, offset: i16, st_check_mem: bool) -> Result<(), SimErr> {
        self.set_pc(Word::from(self.pc.wrapping_add_signed(offset)), st_check_mem)
    }
    /// Gets the value of the prefetch PC.
    /// 
    /// This function is useful as it returns the location of the currently
    /// executing instruction in memory.
    pub fn prefetch_pc(&self) -> u16 {
        self.pc - (!self.prefetch) as u16
    }

    /// Checks whether the address points to a memory location that was allocated
    /// in the currently loaded object file.
    fn in_alloca(&self, addr: u16) -> bool {
        let first_post = self.alloca.partition_point(|&(start, _)| start <= addr);
        if first_post == 0 { return false };
        
        // This is the last block where start <= addr.
        let (start, len) = self.alloca[first_post - 1];

        // We must also check that addr < end.
        // If start + len is None, that means end is greater than all possible lengths.
        match start.checked_add(len) {
            Some(e) => addr < e,
            None    => true
        }
    }

    /// Indicates whether the last execution of the simulator hit a breakpoint.
    pub fn hit_breakpoint(&self) -> bool {
        matches!(self.pause_condition, PauseCondition::Breakpoint)
    }

    /// Indicates whether the last execution of the simulator resulted in a HALT successfully occurring.
    /// 
    /// This is defined as:
    /// - `HALT` being executed while virtual HALTs are enabled
    /// - `MCR` being set to `x0000` during the execution of the program.
    pub fn hit_halt(&self) -> bool {
        matches!(self.pause_condition, PauseCondition::Halt | PauseCondition::MCROff)
    }

    /// Computes the default memory access context, 
    /// which are the default flags to use (see [`Mem::read`] and [`Mem::write`]).
    pub fn default_mem_ctx(&self) -> MemAccessCtx {
        MemAccessCtx { privileged: self.psr.privileged(), strict: self.flags.strict }
    }

    /// Calls a subroutine.
    /// 
    /// This does all the steps for calling a subroutine, namely:
    /// - Setting the PC to the subroutine's start address
    /// - Setting R7 to the original PC (return address)
    /// - Adding information to the frame stack
    pub fn call_subroutine(&mut self, addr: u16) -> Result<(), SimErr> {
        self.reg_file[R7].set(self.pc);
        self.frame_stack.push_frame(self.prefetch_pc(), addr, FrameType::Subroutine, &self.reg_file, &self.mem);
        self.set_pc(Word::new_init(addr), true)
    }

    /// Calls a trap or interrupt, adding information to the frame stack
    /// and setting the PC to the start of the trap/interrupt handler.
    /// 
    /// `0x00-0xFF` represents a trap,
    /// `0x100-0x1FF` represents an interrupt.
    fn call_interrupt(&mut self, vect: u16, ft: FrameType) -> Result<(), SimErr> {
        let addr = self.mem.read(vect, self.default_mem_ctx())?
            .get_if_init(self.flags.strict, SimErr::StrictSRAddrUninit)?;

        self.frame_stack.push_frame(self.prefetch_pc(), vect, ft, &self.reg_file, &self.mem);
        self.set_pc(Word::new_init(addr), true)
    }
    /// Interrupt, trap, and exception handler.
    /// 
    /// If priority is none, this will unconditionally initialize the trap or exception handler.
    /// If priority is not none, this will run the interrupt handler only if the interrupt's priority
    /// is greater than the PSR's priority.
    /// 
    /// The address provided is the address into the jump table (either the trap or interrupt vector ones).
    /// This function will always jump to `mem[vect]` at the end of this function.
    fn handle_interrupt(&mut self, vect: u16, priority: Option<u8>) -> Result<(), StepBreak> {
        if priority.is_some_and(|prio| prio <= self.psr.priority()) { return Ok(()) };
        
        // Virtual HALT
        if !self.flags.use_real_halt && vect == 0x25 {
            self.offset_pc(-1, false)?; // decrement PC so that execution goes back here
            return Err(StepBreak::Halt)
        };
        
        if !self.psr.privileged() {
            std::mem::swap(&mut self.saved_sp, &mut self.reg_file[R6]);
        }

        // Push PSR, PC to supervisor stack
        let old_psr = self.psr.0;
        let old_pc = self.pc;
        
        self.psr.set_privileged(true);
        let mctx = self.default_mem_ctx();

        // push PSR and PC to stack
        let sp = self.reg_file[R6]
            .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?;

        self.reg_file[R6] -= 2u16;
        self.mem.write(sp.wrapping_sub(1), Word::new_init(old_psr), mctx)?;
        self.mem.write(sp.wrapping_sub(2), Word::new_init(old_pc), mctx)?;
        
        // set interrupt priority
        if let Some(prio) = priority {
            self.psr.set_priority(prio);
        }

        let ft = match priority.is_some() {
            true => FrameType::Interrupt,
            false => FrameType::Trap,
        };
        
        self.call_interrupt(vect, ft)
            .map_err(Into::into)
    }

    /// Registers an "external interrupt" to the simulator which is run every step.
    /// 
    /// An "external interrupt" is a function that can pause execution of the `Simulator`,
    /// which is not necessarily handled by the Simulator's OS.
    /// 
    /// When an error is raised by an external interrupt, the simulation will raise [`SimErr::Interrupt`],
    /// which can be used to handle the resulting `InterruptErr`.
    /// 
    /// One example where this is used is in Python bindings. 
    /// In that case, we want to be able to halt the Simulator on a `KeyboardInterrupt`.
    /// However, by default, Python cannot signal to the Rust library that a `KeyboardInterrupt`
    /// has occurred. Thus, we can add a signal handler as an external interrupt to allow the `KeyboardInterrupt`
    /// to be handled properly.
    pub fn add_external_interrupt<E, F>(&mut self, interrupt: F) 
        where E: std::error::Error + Send + Sync + 'static,
              F: Fn(&Self) -> Result<(), E> + Send + Sync + 'static
    {
        self.external_interrupts.push(SimInterrupt(Box::new({
            move |this| interrupt(this).map_err(InterruptErr::new)
        })))
    }

    /// Clears any external interrupts.
    pub fn clear_external_interrupts(&mut self) {
        self.external_interrupts.clear()
    }

    /// Runs until the tripwire condition returns false (or any of the typical breaks occur).
    /// 
    /// The typical break conditions are:
    /// - `HALT` is executed
    /// - the MCR is set to false
    /// - A breakpoint matches
    pub fn run_while(&mut self, mut tripwire: impl FnMut(&mut Simulator) -> bool) -> Result<(), SimErr> {
        use std::sync::atomic::Ordering;

        std::mem::take(&mut self.pause_condition);
        self.mcr.store(true, Ordering::Relaxed);

        // event loop
        // run until:
        // 1. the MCR is set to false
        // 2. the tripwire condition returns false
        // 3. any of the breakpoints are hit
        let result = loop {
            // MCR turned off:
            if !self.mcr.load(Ordering::Relaxed) {
                break Ok(PauseCondition::MCROff);
            }
            // Tripwire turned off:
            if !tripwire(self) {
                break Ok(PauseCondition::Tripwire);
            }
            
            // Run a step:
            match self.step() {
                Ok(_) => {},
                Err(StepBreak::Halt) => break Ok(PauseCondition::Halt),
                Err(StepBreak::Err(e)) => break Err(e)
            }

            // After executing, check that any breakpoints were hit.
            if self.breakpoints.iter().any(|bp| bp.check(self)) {
                break Ok(PauseCondition::Breakpoint);
            }
        };
    
        self.mcr.store(false, Ordering::Release);
        self.pause_condition = result?;
        Ok(())
    }

    /// Execute the program.
    /// 
    /// This blocks until the program ends. 
    /// If you would like to limit the maximum number of steps to execute, consider [`Simulator::run_with_limit`].
    pub fn run(&mut self) -> Result<(), SimErr> {
        self.run_while(|_| true)
    }

    /// Execute the program with a limit on how many steps to execute.
    /// 
    /// This blocks until the program ends or until the number of steps to execute has been hit.
    pub fn run_with_limit(&mut self, max_steps: u64) -> Result<(), SimErr> {
        let i = self.instructions_run;
        self.run_while(|sim| sim.instructions_run.wrapping_sub(i) < max_steps)
    }
    
    /// Simulate one step, executing one instruction.
    /// 
    /// This function is a library function and should be used when one step is needed.
    /// The difference between this function and [`Simulator::step_in`] is that this
    /// function can return [`SimErr::ProgramHalted`] as an error,
    /// whereas `step_in` will ignore `ProgramHalted` errors.
    fn step(&mut self) -> Result<(), StepBreak> {
        self.prefetch = true;

        // Call all external interrupts:
        for SimInterrupt(cb) in &self.external_interrupts {
            cb(self)?;
        }

        let word = self.mem.read(self.pc, self.default_mem_ctx())?
            .get_if_init(self.flags.strict, SimErr::StrictPCCurrUninit)?;
        let instr = SimInstr::decode(word)?;

        self.offset_pc(1, false)?;
        self.prefetch = false;

        match instr {
            SimInstr::BR(cc, off)  => {
                if cc & self.psr.cc() != 0 {
                    self.offset_pc(off.get(), true)?;
                }
            },
            SimInstr::ADD(dr, sr1, sr2) => {
                let val1 = self.reg_file[sr1];
                let val2 = match sr2 {
                    ImmOrReg::Imm(i2) => Word::from(i2.get()),
                    ImmOrReg::Reg(r2) => self.reg_file[r2],
                };

                let result = val1 + val2;
                self.reg_file[dr].set_if_init(result, self.flags.strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(result.get());
            },
            SimInstr::LD(dr, off) => {
                let ea = self.pc.wrapping_add_signed(off.get());
                let write_strict = self.flags.strict && !self.in_alloca(ea);

                let val = self.mem.read(ea, self.default_mem_ctx())?;
                self.reg_file[dr].set_if_init(val, write_strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(val.get());
            },
            SimInstr::ST(sr, off) => {
                let ea = self.pc.wrapping_add_signed(off.get());
                let write_ctx = MemAccessCtx {
                    strict: self.flags.strict && !self.in_alloca(ea),
                    ..self.default_mem_ctx()
                };

                let val = self.reg_file[sr];
                self.mem.write(ea, val, write_ctx)?;
            },
            SimInstr::JSR(op) => {
                // Note: JSRR R7 jumps to address at R7, then sets PC to R7.
                // Refer to: https://github.com/gt-cs2110/lc3tools/commit/fa9a23f62106eeee9fef7d2a278ba989356c9ee2

                let addr = match op {
                    ImmOrReg::Imm(off) => Word::from(self.pc.wrapping_add_signed(off.get())),
                    ImmOrReg::Reg(br)  => self.reg_file[br],
                }.get_if_init(self.flags.strict, SimErr::StrictSRAddrUninit)?;

                self.call_subroutine(addr)?;
            },
            SimInstr::AND(dr, sr1, sr2) => {
                let val1 = self.reg_file[sr1];
                let val2 = match sr2 {
                    ImmOrReg::Imm(i2) => Word::from(i2.get()),
                    ImmOrReg::Reg(r2) => self.reg_file[r2],
                };

                let result = val1 & val2;
                self.reg_file[dr].set_if_init(result, self.flags.strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(result.get());
            },
            SimInstr::LDR(dr, br, off) => {
                let ea = self.reg_file[br]
                    .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?
                    .wrapping_add_signed(off.get());
                let write_strict = self.flags.strict && br != R6 && !self.in_alloca(ea);
                
                let val = self.mem.read(ea, self.default_mem_ctx())?;
                self.reg_file[dr].set_if_init(val, write_strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(val.get());
            },
            SimInstr::STR(sr, br, off) => {
                let ea = self.reg_file[br]
                    .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?
                    .wrapping_add_signed(off.get());
                let write_ctx = MemAccessCtx {
                    strict: self.flags.strict && br != R6 && !self.in_alloca(ea),
                    ..self.default_mem_ctx()
                };
                
                let val = self.reg_file[sr];
                self.mem.write(ea, val, write_ctx)?;
            },
            SimInstr::RTI => {
                if self.psr.privileged() {
                    let mctx = self.default_mem_ctx();

                    // Pop PC and PSR from the stack
                    let sp = self.reg_file[R6]
                        .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?;

                    let pc = self.mem.read(sp, mctx)?
                        .get_if_init(self.flags.strict, SimErr::StrictJmpAddrUninit)?;
                    let psr = self.mem.read(sp.wrapping_add(1), mctx)?
                        .get_if_init(self.flags.strict, SimErr::StrictPSRSetUninit)?;
                    self.reg_file[R6] += 2u16;

                    self.set_pc(Word::new_init(pc), true)?;
                    self.psr = PSR(psr);

                    if !self.psr.privileged() {
                        std::mem::swap(&mut self.saved_sp, &mut self.reg_file[R6]);
                    }

                    self.frame_stack.pop_frame();
                } else {
                    return Err(SimErr::PrivilegeViolation.into());
                }
            },
            SimInstr::NOT(dr, sr) => {
                let val = self.reg_file[sr];
                
                let result = !val;
                self.reg_file[dr].set_if_init(result, self.flags.strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(result.get());
            },
            SimInstr::LDI(dr, off) => {
                let shifted_pc = self.pc.wrapping_add_signed(off.get());
                let ea = self.mem.read(shifted_pc, self.default_mem_ctx())?
                    .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?;
                let write_strict = self.flags.strict && !self.in_alloca(ea);

                let val = self.mem.read(ea, self.default_mem_ctx())?;
                self.reg_file[dr].set_if_init(val, write_strict, SimErr::StrictRegSetUninit)?;
                self.set_cc(val.get());
            },
            SimInstr::STI(sr, off) => {
                let shifted_pc = self.pc.wrapping_add_signed(off.get());
                let ea = self.mem.read(shifted_pc, self.default_mem_ctx())?
                    .get_if_init(self.flags.strict, SimErr::StrictMemAddrUninit)?;
                let write_ctx = MemAccessCtx {
                    strict: self.flags.strict && !self.in_alloca(ea),
                    ..self.default_mem_ctx()
                };

                let val = self.reg_file[sr];
                self.mem.write(ea, val, write_ctx)?;
            },
            SimInstr::JMP(br) => {
                let addr = self.reg_file[br];
                self.set_pc(addr, true)?;
                
                // if this is RET,
                // we must also handle frame information:
                if br.reg_no() == 7 {
                    self.frame_stack.pop_frame();
                }
            },
            SimInstr::LEA(dr, off) => {
                let ea = self.pc.wrapping_add_signed(off.get());
                self.reg_file[dr].set(ea);
            },
            SimInstr::TRAP(vect) => {
                self.handle_interrupt(vect.get(), None)?;
            },
        }

        self.instructions_run = self.instructions_run.wrapping_add(1);
        Ok(())
    }

    /// Simulate one step, executing one instruction.
    pub fn step_in(&mut self) -> Result<(), SimErr> {
        match self.step() {
            Ok(()) => Ok(()),
            Err(StepBreak::Halt) => Ok(()),
            Err(StepBreak::Err(e)) => Err(e)
        }
    }

    /// Simulate one step, executing one instruction and running through entire subroutines as a single step.
    pub fn step_over(&mut self) -> Result<(), SimErr> {
        let curr_frame = self.frame_stack.len();
        let mut first = Some(()); // is Some if this is the first instruction executed in this call

        // this function should do at least one step before checking its condition
        // condition: run until we have landed back in the same frame
        self.run_while(|sim| first.take().is_some() || curr_frame < sim.frame_stack.len())
    }

    /// Run through the simulator's execution until the subroutine is exited.
    pub fn step_out(&mut self) -> Result<(), SimErr> {
        let curr_frame = self.frame_stack.len();
        let mut first = Some(()); // is Some if this is the first instruction executed in this call
        
        // this function should do at least one step before checking its condition
        // condition: run until we've landed in a smaller frame
        if curr_frame != 0 {
            self.run_while(|sim| first.take().is_some() || curr_frame <= sim.frame_stack.len())?;
        }

        Ok(())
    }
}
impl Default for Simulator {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

/// A wrapper over `u16` in order to faciliate the PSR.
/// 
/// The word is encoded as the following:
/// - `PSR[15..16]`: Privilege mode (0 = supervisor, 1 = user)
/// - `PSR[8..11]`:  Interrupt priority
/// - `PSR[0..3]`:   Condition codes
/// 
/// ```text
///         privilege
///         |     interrupt priority
///         |     |         condition codes
///         |     |         |
///         V     V         V
/// 0x8002: 1000 0000 0000 0010
///         ~     ~~~       ~~~
/// ```
/// 
/// Each of these are exposed as the [`PSR::privileged`], [`PSR::priority`], and [`PSR::cc`] values.
#[allow(clippy::upper_case_acronyms)]
#[repr(transparent)]
pub struct PSR(pub u16);

impl PSR {
    /// Creates a PSR with a default value (user mode, `z` condition code).
    pub fn new() -> Self {
        PSR(0x8002)
    }

    /// Checks whether the simulator is in privileged mode.
    /// - `true` = supervisor mode
    /// - `false` = user mode
    pub fn privileged(&self) -> bool {
        (self.0 >> 15) == 0
    }
    /// Checks the current interrupt priority of the simulator.
    pub fn priority(&self) -> u8 {
        ((self.0 >> 8) & 0b111) as u8
    }
    /// Checks the condition code of the simulator.
    pub fn cc(&self) -> u8 {
        (self.0 & 0b111) as u8
    }
    /// Checks the condition code of the simulator is `n`.
    pub fn is_n(&self) -> bool {
        self.cc() & 0b100 != 0
    }
    /// Checks the condition code of the simulator is `z`.
    pub fn is_z(&self) -> bool {
        self.cc() & 0b010 != 0
    }
    /// Checks the condition code of the simulator is `p`.
    pub fn is_p(&self) -> bool {
        self.cc() & 0b001 != 0
    }
    /// Sets whether the simulator is in privileged mode.
    pub fn set_privileged(&mut self, privl: bool) {
        self.0 &= 0x7FFF;
        self.0 |= (!privl as u16) << 15;
    }
    /// Sets the current interrupt priority of the simulator.
    pub fn set_priority(&mut self, prio: u8) {
        self.0 &= 0xF8FF;
        self.0 |= ((prio & 0b111) as u16) << 8;
    }
    /// Sets the condition code of the simulator.
    pub fn set_cc(&mut self, cc: u8) {
        self.0 &= 0xFFF8;
        self.0 |= (cc & 0b111) as u16;
    }
    /// Sets the condition code of the simulator to `n`.
    pub fn set_cc_n(&mut self) {
        self.set_cc(0b100)
    }
    /// Sets the condition code of the simulator to `z`.
    pub fn set_cc_z(&mut self) {
        self.set_cc(0b010)
    }
    /// Sets the condition code of the simulator to `p`.
    pub fn set_cc_p(&mut self) {
        self.set_cc(0b001)
    }
}
impl Default for PSR {
    fn default() -> Self {
        Self::new()
    }
}
impl std::fmt::Debug for PSR {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        use std::fmt::Write;
        struct CC(u8);

        impl std::fmt::Debug for CC {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                if self.0 & 0b100 != 0 { f.write_char('N')?; };
                if self.0 & 0b010 != 0 { f.write_char('Z')?; };
                if self.0 & 0b001 != 0 { f.write_char('P')?; };
                Ok(())
            }
        }

        f.debug_struct("PSR")
            .field("privileged", &self.privileged())
            .field("priority", &self.priority())
            .field("cc", &CC(self.cc()))
            .finish()
    }
}