1use crate::Lb;
2use crate::model::errors::{LbResult, Unexpected};
3use crate::model::file::File;
4use crate::service::activity::RankingWeights;
5use crate::service::events::Event;
6use serde::Serialize;
7use std::ops::Range;
8use std::sync::Arc;
9use std::sync::atomic::AtomicBool;
10use tantivy::collector::TopDocs;
11use tantivy::query::QueryParser;
12use tantivy::schema::{STORED, Schema, TEXT, Value};
13use tantivy::snippet::SnippetGenerator;
14use tantivy::{Index, IndexReader, IndexWriter, ReloadPolicy, TantivyDocument, Term, doc};
15use tokio::sync::RwLock;
16use uuid::Uuid;
17
18const CONTENT_MAX_LEN_BYTES: usize = 128 * 1024; #[derive(Clone)]
21pub struct SearchIndex {
22 pub ready: Arc<AtomicBool>,
23
24 pub metadata_index: Arc<RwLock<SearchMetadata>>,
25 pub tantivy_index: Index,
26 pub tantivy_reader: IndexReader,
27}
28
29#[derive(Copy, Clone, Debug)]
30pub enum SearchConfig {
31 Paths,
32 Documents,
33 PathsAndDocuments,
34}
35
36#[derive(Debug)]
37pub enum SearchResult {
38 DocumentMatch { id: Uuid, path: String, content_matches: Vec<ContentMatch> },
39 PathMatch { id: Uuid, path: String, matched_indices: Vec<usize>, score: i64 },
40}
41
42impl Lb {
43 #[instrument(level = "debug", skip(self), err(Debug))]
61 pub async fn search(&self, input: &str, cfg: SearchConfig) -> LbResult<Vec<SearchResult>> {
62 if input.is_empty() {
64 return self.search.metadata_index.read().await.empty_search();
65 }
66
67 match cfg {
68 SearchConfig::Paths => {
69 let mut results = self.search.metadata_index.read().await.path_search(input)?;
70 results.truncate(5);
71 Ok(results)
72 }
73 SearchConfig::Documents => {
74 let mut results = self.search_content(input).await?;
75 results.truncate(10);
76 Ok(results)
77 }
78 SearchConfig::PathsAndDocuments => {
79 let mut results = self.search.metadata_index.read().await.path_search(input)?;
80 results.truncate(4);
81 results.append(&mut self.search_content(input).await?);
82 Ok(results)
83 }
84 }
85 }
86
87 async fn search_content(&self, input: &str) -> LbResult<Vec<SearchResult>> {
88 let searcher = self.search.tantivy_reader.searcher();
89 let schema = self.search.tantivy_index.schema();
90 let id_field = schema.get_field("id").unwrap();
91 let content = schema.get_field("content").unwrap();
92
93 let query_parser = QueryParser::for_index(&self.search.tantivy_index, vec![content]);
94 let mut results = vec![];
95
96 if let Ok(query) = query_parser.parse_query(input) {
97 let mut snippet_generator =
98 SnippetGenerator::create(&searcher, &query, content).map_unexpected()?;
99 snippet_generator.set_max_num_chars(100);
100
101 let top_docs = searcher
102 .search(&query, &TopDocs::with_limit(10))
103 .map_unexpected()?;
104
105 for (_score, doc_address) in top_docs {
106 let retrieved_doc: TantivyDocument = searcher.doc(doc_address).map_unexpected()?;
107 let id = Uuid::from_slice(
108 retrieved_doc
109 .get_first(id_field)
110 .map(|val| val.as_bytes().unwrap_or_default())
111 .unwrap_or_default(),
112 )
113 .map_unexpected()?;
114
115 let snippet = snippet_generator.snippet_from_doc(&retrieved_doc);
116 let path = self
117 .search
118 .metadata_index
119 .read()
120 .await
121 .paths
122 .iter()
123 .find(|(path_id, _)| *path_id == id)
124 .map(|(_, path)| path.to_string())
125 .unwrap_or_default();
126
127 results.push(SearchResult::DocumentMatch {
128 id,
129 path,
130 content_matches: vec![ContentMatch {
131 paragraph: snippet.fragment().to_string(),
132 matched_indices: Self::highlight_to_matches(snippet.highlighted()),
133 score: 0,
134 }],
135 });
136 }
137 }
138 Ok(results)
139 }
140
141 fn highlight_to_matches(ranges: &[Range<usize>]) -> Vec<usize> {
142 let mut matches = vec![];
143 for range in ranges {
144 for i in range.clone() {
145 matches.push(i);
146 }
147 }
148
149 matches
150 }
151
152 #[instrument(level = "debug", skip(self), err(Debug))]
153 pub async fn build_index(&self) -> LbResult<()> {
154 if self.keychain.get_account().is_err() {
157 return Ok(());
158 }
159
160 let metadata_index = SearchMetadata::populate(self).await?;
161 *self.search.metadata_index.write().await = metadata_index.clone();
162 self.update_tantivy(vec![], metadata_index.files.iter().map(|f| f.id).collect())
163 .await;
164
165 Ok(())
166 }
167
168 #[instrument(level = "debug", skip(self))]
169 pub fn setup_search(&self) {
170 if self.config.background_work {
171 let lb = self.clone();
172 let mut rx = self.subscribe();
173 tokio::spawn(async move {
174 lb.build_index().await.unwrap();
175 loop {
176 let evt = match rx.recv().await {
177 Ok(evt) => evt,
178 Err(err) => {
179 error!("failed to receive from a channel {err}");
180 return;
181 }
182 };
183
184 match evt {
185 Event::MetadataChanged => {
186 if let Some(replacement_index) =
187 SearchMetadata::populate(&lb).await.log_and_ignore()
188 {
189 let current_index = lb.search.metadata_index.read().await.clone();
190 let deleted_ids = replacement_index.compute_deleted(¤t_index);
191 *lb.search.metadata_index.write().await = replacement_index;
192 lb.update_tantivy(vec![], deleted_ids).await;
193 }
194 }
195 Event::DocumentWritten(id, _) => {
196 lb.update_tantivy(vec![id], vec![id]).await;
197 }
198 _ => {}
199 };
200 }
201 });
202 }
203 }
204
205 async fn update_tantivy(&self, delete: Vec<Uuid>, add: Vec<Uuid>) {
206 let mut index_writer: IndexWriter = self.search.tantivy_index.writer(50_000_000).unwrap();
207 let schema = self.search.tantivy_index.schema();
208 let id_field = schema.get_field("id").unwrap();
209 let id_str = schema.get_field("id_str").unwrap();
210 let content = schema.get_field("content").unwrap();
211
212 for id in delete {
213 let term = Term::from_field_text(id_str, &id.to_string());
214 index_writer.delete_term(term);
215 }
216
217 for id in add {
218 let id_bytes = id.as_bytes().as_slice();
219 let id_string = id.to_string();
220 let Some(file) = self
221 .search
222 .metadata_index
223 .read()
224 .await
225 .files
226 .iter()
227 .find(|f| f.id == id)
228 .cloned()
229 else {
230 continue;
231 };
232
233 if !file.name.ends_with(".md") || file.is_folder() {
234 continue;
235 };
236
237 let doc = String::from_utf8(self.read_document(file.id, false).await.unwrap()).unwrap();
238
239 if doc.len() > CONTENT_MAX_LEN_BYTES {
240 continue;
241 };
242
243 index_writer
244 .add_document(doc!(
245 id_field => id_bytes,
246 id_str => id_string,
247 content => doc,
248 ))
249 .unwrap();
250 }
251
252 index_writer.commit().unwrap();
253 }
254}
255
256impl Default for SearchIndex {
257 fn default() -> Self {
258 let mut schema_builder = Schema::builder();
259 schema_builder.add_bytes_field("id", STORED);
260 schema_builder.add_text_field("id_str", TEXT | STORED);
261 schema_builder.add_text_field("content", TEXT | STORED);
262
263 let schema = schema_builder.build();
264
265 let index = Index::create_in_ram(schema.clone());
266
267 let reader = index
269 .reader_builder()
270 .reload_policy(ReloadPolicy::OnCommitWithDelay)
271 .try_into()
272 .unwrap();
273
274 Self {
275 ready: Default::default(),
276 tantivy_index: index,
277 tantivy_reader: reader,
278 metadata_index: Default::default(),
279 }
280 }
281}
282
283#[derive(Debug, Serialize)]
284pub struct ContentMatch {
285 pub paragraph: String,
286 pub matched_indices: Vec<usize>,
287 pub score: i64,
288}
289
290impl SearchResult {
291 pub fn id(&self) -> Uuid {
292 match self {
293 SearchResult::DocumentMatch { id, .. } | SearchResult::PathMatch { id, .. } => *id,
294 }
295 }
296
297 pub fn path(&self) -> &str {
298 match self {
299 SearchResult::DocumentMatch { path, .. } | SearchResult::PathMatch { path, .. } => path,
300 }
301 }
302
303 pub fn name(&self) -> &str {
304 match self {
305 SearchResult::DocumentMatch { path, .. } | SearchResult::PathMatch { path, .. } => {
306 path.split('/').next_back().unwrap_or_default()
307 }
308 }
309 }
310
311 pub fn score(&self) -> i64 {
312 match self {
313 SearchResult::DocumentMatch { content_matches, .. } => content_matches
314 .iter()
315 .map(|m| m.score)
316 .max()
317 .unwrap_or_default(),
318 SearchResult::PathMatch { score, .. } => *score,
319 }
320 }
321}
322
323#[derive(Default, Clone)]
324pub struct SearchMetadata {
325 files: Vec<File>,
326 paths: Vec<(Uuid, String)>,
327 suggested_docs: Vec<Uuid>,
328}
329
330impl SearchMetadata {
331 async fn populate(lb: &Lb) -> LbResult<Self> {
332 let files = lb.list_metadatas().await?;
333 let paths = lb.list_paths_with_ids(None).await?;
334 let suggested_docs = lb.suggested_docs(RankingWeights::default()).await?;
335
336 Ok(SearchMetadata { files, paths, suggested_docs })
337 }
338
339 fn compute_deleted(&self, old: &SearchMetadata) -> Vec<Uuid> {
340 let mut deleted_ids = vec![];
341
342 for old_file in &old.files {
343 if !self.files.iter().any(|new_f| new_f.id == old_file.id) {
344 deleted_ids.push(old_file.id);
345 }
346 }
347
348 deleted_ids
349 }
350
351 fn empty_search(&self) -> LbResult<Vec<SearchResult>> {
352 let mut results = vec![];
353
354 for id in &self.suggested_docs {
355 let path = self
356 .paths
357 .iter()
358 .find(|(path_id, _)| id == path_id)
359 .map(|(_, path)| path.clone())
360 .unwrap_or_default();
361
362 results.push(SearchResult::PathMatch {
363 id: *id,
364 path,
365 matched_indices: vec![],
366 score: 0,
367 });
368 }
369
370 Ok(results)
371 }
372
373 fn path_search(&self, query: &str) -> LbResult<Vec<SearchResult>> {
374 let mut results = self.path_candidates(query)?;
375 self.score_paths(&mut results);
376
377 results.sort_by_key(|r| -r.score());
378
379 if let Some(result) = self.id_match(query) {
380 results.insert(0, result);
381 }
382
383 Ok(results)
384 }
385
386 fn id_match(&self, query: &str) -> Option<SearchResult> {
387 if query.len() < 8 {
388 return None;
389 }
390
391 let query = if query.starts_with("lb://") {
392 query.replacen("lb://", "", 1)
393 } else {
394 query.to_string()
395 };
396
397 for (id, path) in &self.paths {
398 if id.to_string().contains(&query) {
399 return Some(SearchResult::PathMatch {
400 id: *id,
401 path: path.clone(),
402 matched_indices: vec![],
403 score: 100,
404 });
405 }
406 }
407
408 None
409 }
410
411 fn path_candidates(&self, query: &str) -> LbResult<Vec<SearchResult>> {
412 let mut search_results = vec![];
413
414 for (id, path) in &self.paths {
415 let mut matched_indices = vec![];
416
417 let mut query_iter = query.chars().rev();
418 let mut current_query_char = query_iter.next();
419
420 for (path_ind, path_char) in path.char_indices().rev() {
421 if let Some(qc) = current_query_char {
422 if qc.eq_ignore_ascii_case(&path_char) {
423 matched_indices.push(path_ind);
424 current_query_char = query_iter.next();
425 }
426 } else {
427 break;
428 }
429 }
430
431 if current_query_char.is_none() {
432 search_results.push(SearchResult::PathMatch {
433 id: *id,
434 path: path.clone(),
435 matched_indices,
436 score: 0,
437 });
438 }
439 }
440 Ok(search_results)
441 }
442
443 fn score_paths(&self, candidates: &mut [SearchResult]) {
444 let smaller_paths = 10;
446 let suggested = 10;
447 let filename = 30;
448 let editable = 3;
449
450 candidates.sort_by_key(|a| a.path().len());
451
452 for i in 0..smaller_paths {
454 if let Some(SearchResult::PathMatch { id: _, path: _, matched_indices: _, score }) =
455 candidates.get_mut(i)
456 {
457 *score = (smaller_paths - i) as i64;
458 }
459 }
460
461 for cand in candidates.iter_mut() {
463 if self.suggested_docs.contains(&cand.id()) {
464 if let SearchResult::PathMatch { id: _, path: _, matched_indices: _, score } = cand
465 {
466 *score += suggested;
467 }
468 }
469 }
470
471 for cand in candidates.iter_mut() {
473 if let SearchResult::PathMatch { id: _, path, matched_indices, score } = cand {
474 let mut name_match = 0;
475 let mut name_size = 0;
476
477 for (i, c) in path.char_indices().rev() {
478 if c == '/' {
479 break;
480 }
481 name_size += 1;
482 if matched_indices.contains(&i) {
483 name_match += 1;
484 }
485 }
486
487 let match_portion = name_match as f32 / name_size.max(1) as f32;
488 *score += (match_portion * filename as f32) as i64;
489 }
490 }
491
492 for cand in candidates.iter_mut() {
494 if let SearchResult::PathMatch { id: _, path, matched_indices: _, score } = cand {
495 if path.ends_with(".md") || path.ends_with(".svg") {
496 *score += editable;
497 }
498 }
499 }
500 }
501}