pub struct CypherQuery { /* private fields */ }Expand description
A Cypher query that can be executed against Lance datasets
Implementations§
Source§impl CypherQuery
impl CypherQuery
Sourcepub fn with_config(self, config: GraphConfig) -> Self
pub fn with_config(self, config: GraphConfig) -> Self
Set the graph configuration for this query
Sourcepub fn with_parameter<K, V>(self, key: K, value: V) -> Self
pub fn with_parameter<K, V>(self, key: K, value: V) -> Self
Add a parameter to the query
Sourcepub fn with_parameters(self, params: HashMap<String, Value>) -> Self
pub fn with_parameters(self, params: HashMap<String, Value>) -> Self
Add multiple parameters to the query
Sourcepub fn query_text(&self) -> &str
pub fn query_text(&self) -> &str
Get the original query text
Sourcepub fn config(&self) -> Option<&GraphConfig>
pub fn config(&self) -> Option<&GraphConfig>
Get the graph configuration
Sourcepub fn parameters(&self) -> &HashMap<String, Value>
pub fn parameters(&self) -> &HashMap<String, Value>
Get query parameters
Sourcepub async fn execute(
&self,
datasets: HashMap<String, RecordBatch>,
strategy: Option<ExecutionStrategy>,
) -> Result<RecordBatch>
pub async fn execute( &self, datasets: HashMap<String, RecordBatch>, strategy: Option<ExecutionStrategy>, ) -> Result<RecordBatch>
Execute the query against provided in-memory datasets
This method uses the DataFusion planner by default for comprehensive query support including joins, aggregations, and complex patterns. You can optionally specify a different execution strategy.
§Arguments
datasets- HashMap of table name to RecordBatch (nodes and relationships)strategy- Optional execution strategy (defaults to DataFusion)
§Returns
A single RecordBatch containing the query results
§Errors
Returns error if query parsing, planning, or execution fails
§Example
use std::collections::HashMap;
use arrow::record_batch::RecordBatch;
use lance_graph::query::CypherQuery;
// Create in-memory datasets
let mut datasets = HashMap::new();
datasets.insert("Person".to_string(), person_batch);
datasets.insert("KNOWS".to_string(), knows_batch);
// Parse and execute query
let query = CypherQuery::parse("MATCH (p:Person)-[:KNOWS]->(f) RETURN p.name, f.name")?
.with_config(config);
// Use the default DataFusion strategy
let result = query.execute(datasets, None).await?;
// Use the Simple strategy explicitly
let result = query.execute(datasets, Some(ExecutionStrategy::Simple)).await?;Sourcepub async fn explain(
&self,
datasets: HashMap<String, RecordBatch>,
) -> Result<String>
pub async fn explain( &self, datasets: HashMap<String, RecordBatch>, ) -> Result<String>
Explain the query execution plan using in-memory datasets
Returns a formatted string showing the query execution plan at different stages:
- Graph Logical Plan (graph-specific operators)
- DataFusion Logical Plan (optimized relational plan)
- DataFusion Physical Plan (execution plan with optimizations)
This is useful for understanding query performance, debugging, and optimization.
§Arguments
datasets- HashMap of table name to RecordBatch (nodes and relationships)
§Returns
A formatted string containing the execution plan at multiple levels
§Errors
Returns error if planning fails
§Example
use std::collections::HashMap;
use arrow::record_batch::RecordBatch;
use lance_graph::query::CypherQuery;
// Create in-memory datasets
let mut datasets = HashMap::new();
datasets.insert("Person".to_string(), person_batch);
datasets.insert("KNOWS".to_string(), knows_batch);
let query = CypherQuery::parse("MATCH (p:Person) WHERE p.age > 30 RETURN p.name")?
.with_config(config);
let plan = query.explain(datasets).await?;
println!("{}", plan);Sourcepub async fn to_sql(
&self,
datasets: HashMap<String, RecordBatch>,
) -> Result<String>
pub async fn to_sql( &self, datasets: HashMap<String, RecordBatch>, ) -> Result<String>
Convert the Cypher query to a DataFusion SQL string
This method generates a SQL string that corresponds to the DataFusion logical plan
derived from the Cypher query. It uses the datafusion-sql unparser.
WARNING: This method is experimental and the generated SQL dialect may change.
Case Sensitivity Limitation: All table names in the generated SQL are lowercased
(e.g., Person becomes person, Company becomes company), due to the internal
handling of DataFusion’s SQL unparser. Note that this only affects the SQL string
representation - actual query execution with execute() handles case-sensitive labels
correctly.
If you need case-sensitive table names in the SQL output, consider:
- Using lowercase labels consistently in your Cypher queries and table names
- Post-processing the SQL string to replace table names with the correct case
§Arguments
datasets- HashMap of table name to RecordBatch (nodes and relationships)
§Returns
A SQL string representing the query
Sourcepub async fn execute_with_context(
&self,
ctx: SessionContext,
) -> Result<RecordBatch>
pub async fn execute_with_context( &self, ctx: SessionContext, ) -> Result<RecordBatch>
Execute query with a DataFusion SessionContext, automatically building the catalog
This is a convenience method that builds the graph catalog by querying the SessionContext for table schemas. The GraphConfig determines which tables to look up (node labels and relationship types).
This method is ideal for integrating with DataFusion’s rich data source ecosystem (CSV, Parquet, Delta Lake, Iceberg, etc.) without manually building a catalog.
§Arguments
ctx- DataFusion SessionContext with pre-registered tables
§Returns
Query results as an Arrow RecordBatch
§Errors
Returns error if:
- GraphConfig is not set (use
.with_config()first) - Required tables are not registered in the SessionContext
- Query execution fails
§Example
use datafusion::execution::context::SessionContext;
use datafusion::prelude::CsvReadOptions;
use lance_graph::{CypherQuery, GraphConfig};
// Step 1: Create GraphConfig
let config = GraphConfig::builder()
.with_node_label("Person", "person_id")
.with_relationship("KNOWS", "src_id", "dst_id")
.build()?;
// Step 2: Register data sources in DataFusion
let ctx = SessionContext::new();
ctx.register_csv("Person", "data/persons.csv", CsvReadOptions::default()).await?;
ctx.register_parquet("KNOWS", "s3://bucket/knows.parquet", Default::default()).await?;
// Step 3: Execute query (catalog is built automatically)
let query = CypherQuery::parse("MATCH (p:Person)-[:KNOWS]->(f) RETURN p.name")?
.with_config(config);
let result = query.execute_with_context(ctx).await?;§Note
The catalog is built by querying the SessionContext for schemas of tables mentioned in the GraphConfig. Table names must match between GraphConfig (node labels/relationship types) and SessionContext (registered table names).
Sourcepub async fn execute_with_catalog_and_context(
&self,
catalog: Arc<dyn GraphSourceCatalog>,
ctx: SessionContext,
) -> Result<RecordBatch>
pub async fn execute_with_catalog_and_context( &self, catalog: Arc<dyn GraphSourceCatalog>, ctx: SessionContext, ) -> Result<RecordBatch>
Execute query with an explicit catalog and session context
This is the most flexible API for advanced users who want to provide their own catalog implementation or have fine-grained control over both the catalog and session context.
§Arguments
catalog- Graph catalog containing node and relationship schemas for planningctx- DataFusion SessionContext with registered data sources for execution
§Returns
Query results as an Arrow RecordBatch
§Errors
Returns error if query parsing, planning, or execution fails
§Example
use std::sync::Arc;
use datafusion::execution::context::SessionContext;
use lance_graph::source_catalog::InMemoryCatalog;
use lance_graph::query::CypherQuery;
// Create custom catalog
let catalog = InMemoryCatalog::new()
.with_node_source("Person", custom_table_source);
// Create SessionContext
let ctx = SessionContext::new();
ctx.register_table("Person", custom_table).unwrap();
// Execute with explicit catalog and context
let query = CypherQuery::parse("MATCH (p:Person) RETURN p.name")?
.with_config(config);
let result = query.execute_with_catalog_and_context(Arc::new(catalog), ctx).await?;Sourcepub async fn execute_simple(
&self,
datasets: HashMap<String, RecordBatch>,
) -> Result<RecordBatch>
pub async fn execute_simple( &self, datasets: HashMap<String, RecordBatch>, ) -> Result<RecordBatch>
Execute simple single-table queries (legacy implementation)
This method supports basic projection/filter/limit workflows on a single table.
For full query support including joins and complex patterns, use execute() instead.
Note: This implementation is retained for backward compatibility and simple use cases.
Sourcepub fn referenced_node_labels(&self) -> Vec<String>
pub fn referenced_node_labels(&self) -> Vec<String>
Get all node labels referenced in this query
Sourcepub fn referenced_relationship_types(&self) -> Vec<String>
pub fn referenced_relationship_types(&self) -> Vec<String>
Get all relationship types referenced in this query
Trait Implementations§
Source§impl Clone for CypherQuery
impl Clone for CypherQuery
Source§fn clone(&self) -> CypherQuery
fn clone(&self) -> CypherQuery
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreAuto Trait Implementations§
impl Freeze for CypherQuery
impl RefUnwindSafe for CypherQuery
impl Send for CypherQuery
impl Sync for CypherQuery
impl Unpin for CypherQuery
impl UnwindSafe for CypherQuery
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more