lance_datafusion/
exec.rs

1// SPDX-License-Identifier: Apache-2.0
2// SPDX-FileCopyrightText: Copyright The Lance Authors
3
4//! Utilities for working with datafusion execution plans
5
6use std::{
7    collections::HashMap,
8    sync::{Arc, LazyLock, Mutex},
9};
10
11use arrow_array::RecordBatch;
12use arrow_schema::Schema as ArrowSchema;
13use datafusion::{
14    catalog::streaming::StreamingTable,
15    dataframe::DataFrame,
16    execution::{
17        context::{SessionConfig, SessionContext},
18        disk_manager::DiskManagerBuilder,
19        memory_pool::FairSpillPool,
20        runtime_env::RuntimeEnvBuilder,
21        TaskContext,
22    },
23    physical_plan::{
24        analyze::AnalyzeExec,
25        display::DisplayableExecutionPlan,
26        execution_plan::{Boundedness, CardinalityEffect, EmissionType},
27        stream::RecordBatchStreamAdapter,
28        streaming::PartitionStream,
29        DisplayAs, DisplayFormatType, ExecutionPlan, PlanProperties, SendableRecordBatchStream,
30    },
31};
32use datafusion_common::{DataFusionError, Statistics};
33use datafusion_physical_expr::{EquivalenceProperties, Partitioning};
34
35use futures::{stream, StreamExt};
36use lance_arrow::SchemaExt;
37use lance_core::{
38    utils::{
39        futures::FinallyStreamExt,
40        tracing::{StreamTracingExt, EXECUTION_PLAN_RUN, TRACE_EXECUTION},
41    },
42    Error, Result,
43};
44use log::{debug, info, warn};
45use snafu::location;
46use tracing::Span;
47
48use crate::{
49    chunker::StrictBatchSizeStream,
50    utils::{
51        MetricsExt, BYTES_READ_METRIC, INDEX_COMPARISONS_METRIC, INDICES_LOADED_METRIC,
52        IOPS_METRIC, PARTS_LOADED_METRIC, REQUESTS_METRIC,
53    },
54};
55
56/// An source execution node created from an existing stream
57///
58/// It can only be used once, and will return the stream.  After that the node
59/// is exhausted.
60///
61/// Note: the stream should be finite, otherwise we will report datafusion properties
62/// incorrectly.
63pub struct OneShotExec {
64    stream: Mutex<Option<SendableRecordBatchStream>>,
65    // We save off a copy of the schema to speed up formatting and so ExecutionPlan::schema & display_as
66    // can still function after exhausted
67    schema: Arc<ArrowSchema>,
68    properties: PlanProperties,
69}
70
71impl OneShotExec {
72    /// Create a new instance from a given stream
73    pub fn new(stream: SendableRecordBatchStream) -> Self {
74        let schema = stream.schema();
75        Self {
76            stream: Mutex::new(Some(stream)),
77            schema: schema.clone(),
78            properties: PlanProperties::new(
79                EquivalenceProperties::new(schema),
80                Partitioning::RoundRobinBatch(1),
81                EmissionType::Incremental,
82                Boundedness::Bounded,
83            ),
84        }
85    }
86
87    pub fn from_batch(batch: RecordBatch) -> Self {
88        let schema = batch.schema();
89        let stream = Box::pin(RecordBatchStreamAdapter::new(
90            schema,
91            stream::iter(vec![Ok(batch)]),
92        ));
93        Self::new(stream)
94    }
95}
96
97impl std::fmt::Debug for OneShotExec {
98    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
99        let stream = self.stream.lock().unwrap();
100        f.debug_struct("OneShotExec")
101            .field("exhausted", &stream.is_none())
102            .field("schema", self.schema.as_ref())
103            .finish()
104    }
105}
106
107impl DisplayAs for OneShotExec {
108    fn fmt_as(
109        &self,
110        t: datafusion::physical_plan::DisplayFormatType,
111        f: &mut std::fmt::Formatter,
112    ) -> std::fmt::Result {
113        let stream = self.stream.lock().unwrap();
114        let exhausted = if stream.is_some() { "" } else { "EXHAUSTED" };
115        let columns = self
116            .schema
117            .field_names()
118            .iter()
119            .map(|s| s.to_string())
120            .collect::<Vec<_>>();
121        match t {
122            DisplayFormatType::Default | DisplayFormatType::Verbose => {
123                write!(
124                    f,
125                    "OneShotStream: {}columns=[{}]",
126                    exhausted,
127                    columns.join(",")
128                )
129            }
130            DisplayFormatType::TreeRender => {
131                write!(
132                    f,
133                    "OneShotStream\nexhausted={}\ncolumns=[{}]",
134                    exhausted,
135                    columns.join(",")
136                )
137            }
138        }
139    }
140}
141
142impl ExecutionPlan for OneShotExec {
143    fn name(&self) -> &str {
144        "OneShotExec"
145    }
146
147    fn as_any(&self) -> &dyn std::any::Any {
148        self
149    }
150
151    fn schema(&self) -> arrow_schema::SchemaRef {
152        self.schema.clone()
153    }
154
155    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
156        vec![]
157    }
158
159    fn with_new_children(
160        self: Arc<Self>,
161        _children: Vec<Arc<dyn ExecutionPlan>>,
162    ) -> datafusion_common::Result<Arc<dyn ExecutionPlan>> {
163        todo!()
164    }
165
166    fn execute(
167        &self,
168        _partition: usize,
169        _context: Arc<datafusion::execution::TaskContext>,
170    ) -> datafusion_common::Result<SendableRecordBatchStream> {
171        let stream = self
172            .stream
173            .lock()
174            .map_err(|err| DataFusionError::Execution(err.to_string()))?
175            .take();
176        if let Some(stream) = stream {
177            Ok(stream)
178        } else {
179            Err(DataFusionError::Execution(
180                "OneShotExec has already been executed".to_string(),
181            ))
182        }
183    }
184
185    fn statistics(&self) -> datafusion_common::Result<datafusion_common::Statistics> {
186        Ok(Statistics::new_unknown(&self.schema))
187    }
188
189    fn properties(&self) -> &datafusion::physical_plan::PlanProperties {
190        &self.properties
191    }
192}
193
194struct TracedExec {
195    input: Arc<dyn ExecutionPlan>,
196    properties: PlanProperties,
197    span: Span,
198}
199
200impl TracedExec {
201    pub fn new(input: Arc<dyn ExecutionPlan>, span: Span) -> Self {
202        Self {
203            properties: input.properties().clone(),
204            input,
205            span,
206        }
207    }
208}
209
210impl DisplayAs for TracedExec {
211    fn fmt_as(
212        &self,
213        t: datafusion::physical_plan::DisplayFormatType,
214        f: &mut std::fmt::Formatter,
215    ) -> std::fmt::Result {
216        match t {
217            DisplayFormatType::Default
218            | DisplayFormatType::Verbose
219            | DisplayFormatType::TreeRender => {
220                write!(f, "TracedExec")
221            }
222        }
223    }
224}
225
226impl std::fmt::Debug for TracedExec {
227    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
228        write!(f, "TracedExec")
229    }
230}
231impl ExecutionPlan for TracedExec {
232    fn name(&self) -> &str {
233        "TracedExec"
234    }
235
236    fn as_any(&self) -> &dyn std::any::Any {
237        self
238    }
239
240    fn properties(&self) -> &PlanProperties {
241        &self.properties
242    }
243
244    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
245        vec![&self.input]
246    }
247
248    fn with_new_children(
249        self: Arc<Self>,
250        children: Vec<Arc<dyn ExecutionPlan>>,
251    ) -> datafusion_common::Result<Arc<dyn ExecutionPlan>> {
252        Ok(Arc::new(Self {
253            input: children[0].clone(),
254            properties: self.properties.clone(),
255            span: self.span.clone(),
256        }))
257    }
258
259    fn execute(
260        &self,
261        partition: usize,
262        context: Arc<TaskContext>,
263    ) -> datafusion_common::Result<SendableRecordBatchStream> {
264        let _guard = self.span.enter();
265        let stream = self.input.execute(partition, context)?;
266        let schema = stream.schema();
267        let stream = stream.stream_in_span(self.span.clone());
268        Ok(Box::pin(RecordBatchStreamAdapter::new(schema, stream)))
269    }
270}
271
272/// Callback for reporting statistics after a scan
273pub type ExecutionStatsCallback = Arc<dyn Fn(&ExecutionSummaryCounts) + Send + Sync>;
274
275#[derive(Default, Clone)]
276pub struct LanceExecutionOptions {
277    pub use_spilling: bool,
278    pub mem_pool_size: Option<u64>,
279    pub batch_size: Option<usize>,
280    pub target_partition: Option<usize>,
281    pub execution_stats_callback: Option<ExecutionStatsCallback>,
282}
283
284impl std::fmt::Debug for LanceExecutionOptions {
285    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
286        f.debug_struct("LanceExecutionOptions")
287            .field("use_spilling", &self.use_spilling)
288            .field("mem_pool_size", &self.mem_pool_size)
289            .field("batch_size", &self.batch_size)
290            .field("target_partition", &self.target_partition)
291            .field(
292                "execution_stats_callback",
293                &self.execution_stats_callback.is_some(),
294            )
295            .finish()
296    }
297}
298
299const DEFAULT_LANCE_MEM_POOL_SIZE: u64 = 100 * 1024 * 1024;
300
301impl LanceExecutionOptions {
302    pub fn mem_pool_size(&self) -> u64 {
303        self.mem_pool_size.unwrap_or_else(|| {
304            std::env::var("LANCE_MEM_POOL_SIZE")
305                .map(|s| match s.parse::<u64>() {
306                    Ok(v) => v,
307                    Err(e) => {
308                        warn!("Failed to parse LANCE_MEM_POOL_SIZE: {}, using default", e);
309                        DEFAULT_LANCE_MEM_POOL_SIZE
310                    }
311                })
312                .unwrap_or(DEFAULT_LANCE_MEM_POOL_SIZE)
313        })
314    }
315
316    pub fn use_spilling(&self) -> bool {
317        if !self.use_spilling {
318            return false;
319        }
320        std::env::var("LANCE_BYPASS_SPILLING")
321            .map(|_| {
322                info!("Bypassing spilling because LANCE_BYPASS_SPILLING is set");
323                false
324            })
325            .unwrap_or(true)
326    }
327}
328
329pub fn new_session_context(options: &LanceExecutionOptions) -> SessionContext {
330    let mut session_config = SessionConfig::new();
331    let mut runtime_env_builder = RuntimeEnvBuilder::new();
332    if let Some(target_partition) = options.target_partition {
333        session_config = session_config.with_target_partitions(target_partition);
334    }
335    if options.use_spilling() {
336        runtime_env_builder = runtime_env_builder
337            .with_disk_manager_builder(DiskManagerBuilder::default())
338            .with_memory_pool(Arc::new(FairSpillPool::new(
339                options.mem_pool_size() as usize
340            )));
341    }
342    let runtime_env = runtime_env_builder.build_arc().unwrap();
343    SessionContext::new_with_config_rt(session_config, runtime_env)
344}
345
346static DEFAULT_SESSION_CONTEXT: LazyLock<SessionContext> =
347    LazyLock::new(|| new_session_context(&LanceExecutionOptions::default()));
348
349static DEFAULT_SESSION_CONTEXT_WITH_SPILLING: LazyLock<SessionContext> = LazyLock::new(|| {
350    new_session_context(&LanceExecutionOptions {
351        use_spilling: true,
352        ..Default::default()
353    })
354});
355
356pub fn get_session_context(options: &LanceExecutionOptions) -> SessionContext {
357    if options.mem_pool_size() == DEFAULT_LANCE_MEM_POOL_SIZE && options.target_partition.is_none()
358    {
359        return if options.use_spilling() {
360            DEFAULT_SESSION_CONTEXT_WITH_SPILLING.clone()
361        } else {
362            DEFAULT_SESSION_CONTEXT.clone()
363        };
364    }
365    new_session_context(options)
366}
367
368fn get_task_context(
369    session_ctx: &SessionContext,
370    options: &LanceExecutionOptions,
371) -> Arc<TaskContext> {
372    let mut state = session_ctx.state();
373    if let Some(batch_size) = options.batch_size.as_ref() {
374        state.config_mut().options_mut().execution.batch_size = *batch_size;
375    }
376
377    state.task_ctx()
378}
379
380#[derive(Default, Clone, Debug, PartialEq, Eq)]
381pub struct ExecutionSummaryCounts {
382    /// The number of I/O operations performed
383    pub iops: usize,
384    /// The number of requests made to the storage layer (may be larger or smaller than iops
385    /// depending on coalescing configuration)
386    pub requests: usize,
387    /// The number of bytes read during the execution of the plan
388    pub bytes_read: usize,
389    /// The number of top-level indices loaded
390    pub indices_loaded: usize,
391    /// The number of index partitions loaded
392    pub parts_loaded: usize,
393    /// The number of index comparisons performed (the exact meaning depends on the index type)
394    pub index_comparisons: usize,
395    /// Additional metrics for more detailed statistics.  These are subject to change in the future
396    /// and should only be used for debugging purposes.
397    pub all_counts: HashMap<String, usize>,
398}
399
400fn visit_node(node: &dyn ExecutionPlan, counts: &mut ExecutionSummaryCounts) {
401    if let Some(metrics) = node.metrics() {
402        for (metric_name, count) in metrics.iter_counts() {
403            match metric_name.as_ref() {
404                IOPS_METRIC => counts.iops += count.value(),
405                REQUESTS_METRIC => counts.requests += count.value(),
406                BYTES_READ_METRIC => counts.bytes_read += count.value(),
407                INDICES_LOADED_METRIC => counts.indices_loaded += count.value(),
408                PARTS_LOADED_METRIC => counts.parts_loaded += count.value(),
409                INDEX_COMPARISONS_METRIC => counts.index_comparisons += count.value(),
410                _ => {
411                    let existing = counts
412                        .all_counts
413                        .entry(metric_name.as_ref().to_string())
414                        .or_insert(0);
415                    *existing += count.value();
416                }
417            }
418        }
419    }
420    for child in node.children() {
421        visit_node(child.as_ref(), counts);
422    }
423}
424
425fn report_plan_summary_metrics(plan: &dyn ExecutionPlan, options: &LanceExecutionOptions) {
426    let output_rows = plan
427        .metrics()
428        .map(|m| m.output_rows().unwrap_or(0))
429        .unwrap_or(0);
430    let mut counts = ExecutionSummaryCounts::default();
431    visit_node(plan, &mut counts);
432    tracing::info!(
433        target: TRACE_EXECUTION,
434        r#type = EXECUTION_PLAN_RUN,
435        output_rows,
436        iops = counts.iops,
437        requests = counts.requests,
438        bytes_read = counts.bytes_read,
439        indices_loaded = counts.indices_loaded,
440        parts_loaded = counts.parts_loaded,
441        index_comparisons = counts.index_comparisons,
442    );
443    if let Some(callback) = options.execution_stats_callback.as_ref() {
444        callback(&counts);
445    }
446}
447
448/// Executes a plan using default session & runtime configuration
449///
450/// Only executes a single partition.  Panics if the plan has more than one partition.
451pub fn execute_plan(
452    plan: Arc<dyn ExecutionPlan>,
453    options: LanceExecutionOptions,
454) -> Result<SendableRecordBatchStream> {
455    debug!(
456        "Executing plan:\n{}",
457        DisplayableExecutionPlan::new(plan.as_ref()).indent(true)
458    );
459
460    let session_ctx = get_session_context(&options);
461
462    // NOTE: we are only executing the first partition here. Therefore, if
463    // the plan has more than one partition, we will be missing data.
464    assert_eq!(plan.properties().partitioning.partition_count(), 1);
465    let stream = plan.execute(0, get_task_context(&session_ctx, &options))?;
466
467    let schema = stream.schema();
468    let stream = stream.finally(move || {
469        report_plan_summary_metrics(plan.as_ref(), &options);
470    });
471    Ok(Box::pin(RecordBatchStreamAdapter::new(schema, stream)))
472}
473
474pub async fn analyze_plan(
475    plan: Arc<dyn ExecutionPlan>,
476    options: LanceExecutionOptions,
477) -> Result<String> {
478    // This is needed as AnalyzeExec launches a thread task per
479    // partition, and we want these to be connected to the parent span
480    let plan = Arc::new(TracedExec::new(plan, Span::current()));
481
482    let schema = plan.schema();
483    let analyze = Arc::new(AnalyzeExec::new(true, true, plan, schema));
484
485    let session_ctx = get_session_context(&options);
486    assert_eq!(analyze.properties().partitioning.partition_count(), 1);
487    let mut stream = analyze
488        .execute(0, get_task_context(&session_ctx, &options))
489        .map_err(|err| {
490            Error::io(
491                format!("Failed to execute analyze plan: {}", err),
492                location!(),
493            )
494        })?;
495
496    // fully execute the plan
497    while (stream.next().await).is_some() {}
498
499    let display = DisplayableExecutionPlan::with_metrics(analyze.as_ref());
500    Ok(format!("{}", display.indent(true)))
501}
502
503pub trait SessionContextExt {
504    /// Creates a DataFrame for reading a stream of data
505    ///
506    /// This dataframe may only be queried once, future queries will fail
507    fn read_one_shot(
508        &self,
509        data: SendableRecordBatchStream,
510    ) -> datafusion::common::Result<DataFrame>;
511}
512
513struct OneShotPartitionStream {
514    data: Arc<Mutex<Option<SendableRecordBatchStream>>>,
515    schema: Arc<ArrowSchema>,
516}
517
518impl std::fmt::Debug for OneShotPartitionStream {
519    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
520        let data = self.data.lock().unwrap();
521        f.debug_struct("OneShotPartitionStream")
522            .field("exhausted", &data.is_none())
523            .field("schema", self.schema.as_ref())
524            .finish()
525    }
526}
527
528impl OneShotPartitionStream {
529    fn new(data: SendableRecordBatchStream) -> Self {
530        let schema = data.schema();
531        Self {
532            data: Arc::new(Mutex::new(Some(data))),
533            schema,
534        }
535    }
536}
537
538impl PartitionStream for OneShotPartitionStream {
539    fn schema(&self) -> &arrow_schema::SchemaRef {
540        &self.schema
541    }
542
543    fn execute(&self, _ctx: Arc<TaskContext>) -> SendableRecordBatchStream {
544        let mut stream = self.data.lock().unwrap();
545        stream
546            .take()
547            .expect("Attempt to consume a one shot dataframe multiple times")
548    }
549}
550
551impl SessionContextExt for SessionContext {
552    fn read_one_shot(
553        &self,
554        data: SendableRecordBatchStream,
555    ) -> datafusion::common::Result<DataFrame> {
556        let schema = data.schema();
557        let part_stream = Arc::new(OneShotPartitionStream::new(data));
558        let provider = StreamingTable::try_new(schema, vec![part_stream])?;
559        self.read_table(Arc::new(provider))
560    }
561}
562
563#[derive(Clone, Debug)]
564pub struct StrictBatchSizeExec {
565    input: Arc<dyn ExecutionPlan>,
566    batch_size: usize,
567}
568
569impl StrictBatchSizeExec {
570    pub fn new(input: Arc<dyn ExecutionPlan>, batch_size: usize) -> Self {
571        Self { input, batch_size }
572    }
573}
574
575impl DisplayAs for StrictBatchSizeExec {
576    fn fmt_as(
577        &self,
578        _t: datafusion::physical_plan::DisplayFormatType,
579        f: &mut std::fmt::Formatter,
580    ) -> std::fmt::Result {
581        write!(f, "StrictBatchSizeExec")
582    }
583}
584
585impl ExecutionPlan for StrictBatchSizeExec {
586    fn name(&self) -> &str {
587        "StrictBatchSizeExec"
588    }
589
590    fn as_any(&self) -> &dyn std::any::Any {
591        self
592    }
593
594    fn properties(&self) -> &PlanProperties {
595        self.input.properties()
596    }
597
598    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
599        vec![&self.input]
600    }
601
602    fn with_new_children(
603        self: Arc<Self>,
604        children: Vec<Arc<dyn ExecutionPlan>>,
605    ) -> datafusion_common::Result<Arc<dyn ExecutionPlan>> {
606        Ok(Arc::new(Self {
607            input: children[0].clone(),
608            batch_size: self.batch_size,
609        }))
610    }
611
612    fn execute(
613        &self,
614        partition: usize,
615        context: Arc<TaskContext>,
616    ) -> datafusion_common::Result<SendableRecordBatchStream> {
617        let stream = self.input.execute(partition, context)?;
618        let schema = stream.schema();
619        let stream = StrictBatchSizeStream::new(stream, self.batch_size);
620        Ok(Box::pin(RecordBatchStreamAdapter::new(schema, stream)))
621    }
622
623    fn maintains_input_order(&self) -> Vec<bool> {
624        vec![true]
625    }
626
627    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
628        vec![false]
629    }
630
631    fn partition_statistics(
632        &self,
633        partition: Option<usize>,
634    ) -> datafusion_common::Result<Statistics> {
635        self.input.partition_statistics(partition)
636    }
637
638    fn cardinality_effect(&self) -> CardinalityEffect {
639        CardinalityEffect::Equal
640    }
641}