laddu-core 0.7.1

Core of the laddu library
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//! # laddu-core
//!
//! This is an internal crate used by `laddu`.
#![warn(clippy::perf, clippy::style, missing_docs)]
#![allow(clippy::excessive_precision)]

use ganesh::swarms::{Particle, SwarmPositionInitializer};
use ganesh::{Point, Swarm};
#[cfg(feature = "python")]
use pyo3::PyErr;

/// MPI backend for `laddu`
///
/// Message Passing Interface (MPI) is a protocol which enables communication between multiple
/// CPUs in a high-performance computing environment. While [`rayon`] can parallelize tasks on a
/// single CPU, MPI can also parallelize tasks on multiple CPUs by running independent
/// processes on all CPUs at once (tasks) which are assigned ids (ranks) which tell each
/// process what to do and where to send results. This backend coordinates processes which would
/// typically be parallelized over the events in a [`Dataset`](`crate::data::Dataset`).
///
/// To use this backend, the library must be built with the `mpi` feature, which requires an
/// existing implementation of MPI like OpenMPI or MPICH. All processing code should be
/// sandwiched between calls to [`use_mpi`] and [`finalize_mpi`]:
/// ```ignore
/// fn main() {
///     laddu_core::mpi::use_mpi(true);
///     // laddu analysis code here
///     laddu_core::mpi::finalize_mpi();
/// }
/// ```
///
/// [`finalize_mpi`] must be called to trigger all the methods which clean up the MPI
/// environment. While these are called by default when the [`Universe`](`mpi::environment::Universe`) is dropped, `laddu` uses a static `Universe` that can be accessed by all of the methods that need it, rather than passing the context to each method. This simplifies the way programs can be converted to use MPI, but means that the `Universe` is not automatically dropped at the end of the program (so it must be dropped manually).
#[cfg(feature = "mpi")]
pub mod mpi {
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::OnceLock;

    use lazy_static::lazy_static;
    use mpi::environment::Universe;
    use mpi::topology::{Process, SimpleCommunicator};
    use mpi::traits::Communicator;
    use parking_lot::RwLock;

    lazy_static! {
        static ref USE_MPI: AtomicBool = AtomicBool::new(false);
    }

    static MPI_UNIVERSE: OnceLock<RwLock<Option<Universe>>> = OnceLock::new();

    /// The default root rank for MPI processes
    pub const ROOT_RANK: i32 = 0;

    /// Check if the current MPI process is the root process
    pub fn is_root() -> bool {
        if let Some(world) = crate::mpi::get_world() {
            world.rank() == ROOT_RANK
        } else {
            false
        }
    }

    /// Shortcut method to just get the global MPI communicator without accessing `size` and `rank`
    /// directly
    pub fn get_world() -> Option<SimpleCommunicator> {
        if let Some(universe_lock) = MPI_UNIVERSE.get() {
            if let Some(universe) = &*universe_lock.read() {
                let world = universe.world();
                if world.size() == 1 {
                    return None;
                }
                return Some(world);
            }
        }
        None
    }

    /// Get the rank of the current process
    pub fn get_rank() -> Option<i32> {
        get_world().map(|w| w.rank())
    }

    /// Get number of available processes/ranks
    pub fn get_size() -> Option<i32> {
        get_world().map(|w| w.size())
    }

    /// Use the MPI backend
    ///
    /// # Notes
    ///
    /// You must have MPI installed for this to work, and you must call the program with
    /// `mpirun <executable>`, or bad things will happen.
    ///
    /// MPI runs an identical program on each process, but gives the program an ID called its
    /// "rank". Only the results of methods on the root process (rank 0) should be
    /// considered valid, as other processes only contain portions of each dataset. To ensure
    /// you don't save or print data at other ranks, use the provided [`is_root()`]
    /// method to check if the process is the root process.
    ///
    /// Once MPI is enabled, it cannot be disabled. If MPI could be toggled (which it can't),
    /// the other processes will still run, but they will be independent of the root process
    /// and will no longer communicate with it. The root process stores no data, so it would
    /// be difficult (and convoluted) to get the results which were already processed via
    /// MPI.
    ///
    /// Additionally, MPI must be enabled at the beginning of a script, at least before any
    /// other `laddu` functions are called.
    ///
    /// If [`use_mpi()`] is called multiple times, the subsequent calls will have no
    /// effect.
    ///
    /// <div class="warning">
    ///
    /// You **must** call [`finalize_mpi()`] before your program exits for MPI to terminate
    /// smoothly.
    ///
    /// </div>
    ///
    /// # Examples
    ///
    /// ```ignore
    /// fn main() {
    ///     laddu_core::use_mpi();
    ///
    ///     // ... your code here ...
    ///
    ///     laddu_core::finalize_mpi();
    /// }
    ///
    /// ```
    pub fn use_mpi(trigger: bool) {
        if trigger {
            USE_MPI.store(true, Ordering::SeqCst);
            MPI_UNIVERSE.get_or_init(|| {
                #[cfg(feature = "rayon")]
                let threading = mpi::Threading::Funneled;
                #[cfg(not(feature = "rayon"))]
                let threading = mpi::Threading::Single;
                let (universe, _threading) = mpi::initialize_with_threading(threading).unwrap();
                let world = universe.world();
                if world.size() == 1 {
                    eprintln!("Warning: MPI is enabled, but only one process is available. MPI will not be used, but single-CPU parallelism may still be used if enabled.");
                    finalize_mpi();
                    USE_MPI.store(false, Ordering::SeqCst);
                    RwLock::new(None)
                } else {
                    RwLock::new(Some(universe))
                }
            });
        }
    }

    /// Drop the MPI universe and finalize MPI at the end of a program
    ///
    /// This function will do nothing if MPI is not initialized.
    ///
    /// <div class="warning">
    ///
    /// This should only be called once and should be called at the end of all `laddu`-related
    /// function calls. This must be called at the end of any program which uses MPI.
    ///
    /// </div>
    pub fn finalize_mpi() {
        if using_mpi() {
            let mut universe = MPI_UNIVERSE.get().unwrap().write();
            *universe = None;
        }
    }

    /// Check if MPI backend is enabled
    pub fn using_mpi() -> bool {
        USE_MPI.load(Ordering::SeqCst)
    }

    /// A trait including some useful auxiliary methods for MPI
    pub trait LadduMPI {
        /// Get the process at the root rank
        fn process_at_root(&self) -> Process<'_>;
        /// Check if the current rank is the root rank
        fn is_root(&self) -> bool;
        /// Get the counts/displacements for partitioning a buffer of length
        /// `buf_len`
        fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>);
        /// Get the counts/displacements for partitioning a nested buffer (like
        /// a [`Vec<Vec<T>>`]). If the internal vectors all have the same length
        /// `internal_len` and there are `unflattened_len` elements in the
        /// outer vector, then this will give the correct counts/displacements for a
        /// flattened version of the nested buffer.
        fn get_flattened_counts_displs(
            &self,
            unflattened_len: usize,
            internal_len: usize,
        ) -> (Vec<i32>, Vec<i32>);
    }

    impl LadduMPI for SimpleCommunicator {
        fn process_at_root(&self) -> Process<'_> {
            self.process_at_rank(crate::mpi::ROOT_RANK)
        }

        fn is_root(&self) -> bool {
            self.rank() == crate::mpi::ROOT_RANK
        }

        fn get_counts_displs(&self, buf_len: usize) -> (Vec<i32>, Vec<i32>) {
            let mut counts = vec![0; self.size() as usize];
            let mut displs = vec![0; self.size() as usize];
            let chunk_size = buf_len / self.size() as usize;
            let surplus = buf_len % self.size() as usize;
            for i in 0..self.size() as usize {
                counts[i] = if i < surplus {
                    chunk_size + 1
                } else {
                    chunk_size
                } as i32;
                displs[i] = if i == 0 {
                    0
                } else {
                    displs[i - 1] + counts[i - 1]
                };
            }
            (counts, displs)
        }

        fn get_flattened_counts_displs(
            &self,
            unflattened_len: usize,
            internal_len: usize,
        ) -> (Vec<i32>, Vec<i32>) {
            let mut counts = vec![0; self.size() as usize];
            let mut displs = vec![0; self.size() as usize];
            let chunk_size = unflattened_len / self.size() as usize;
            let surplus = unflattened_len % self.size() as usize;
            for i in 0..self.size() as usize {
                counts[i] = if i < surplus {
                    (chunk_size + 1) * internal_len
                } else {
                    chunk_size * internal_len
                } as i32;
                displs[i] = if i == 0 {
                    0
                } else {
                    displs[i - 1] + counts[i - 1]
                };
            }
            (counts, displs)
        }
    }
}

use thiserror::Error;

/// [`Amplitude`](crate::amplitudes::Amplitude)s and methods for making and evaluating them.
pub mod amplitudes;
/// Methods for loading and manipulating [`Event`]-based data.
pub mod data;
/// Structures for manipulating the cache and free parameters.
pub mod resources;
/// Utility functions, enums, and traits
pub mod utils;
/// Useful traits for all crate structs
pub mod traits {
    pub use crate::amplitudes::Amplitude;
    pub use crate::utils::variables::Variable;
    pub use crate::ReadWrite;
}

pub use crate::data::{open, BinnedDataset, Dataset, Event};
pub use crate::resources::{
    Cache, ComplexMatrixID, ComplexScalarID, ComplexVectorID, MatrixID, ParameterID, Parameters,
    Resources, ScalarID, VectorID,
};
pub use crate::utils::enums::{Channel, Frame, Sign};
pub use crate::utils::variables::{
    Angles, CosTheta, Mandelstam, Mass, Phi, PolAngle, PolMagnitude, Polarization,
};
pub use crate::utils::vectors::{Vec3, Vec4};
pub use amplitudes::{
    constant, parameter, AmplitudeID, Evaluator, Expression, Manager, Model, ParameterLike,
};

// Re-exports
pub use ganesh::{Bound, Ensemble, Status};
pub use nalgebra::DVector;
pub use num::Complex;

/// A floating-point number type (defaults to [`f64`], see `f32` feature).
#[cfg(not(feature = "f32"))]
pub type Float = f64;

/// A floating-point number type (defaults to [`f64`], see `f32` feature).
#[cfg(feature = "f32")]
pub type Float = f32;

/// The mathematical constant $`\pi`$.
#[cfg(not(feature = "f32"))]
pub const PI: Float = std::f64::consts::PI;

/// The mathematical constant $`\pi`$.
#[cfg(feature = "f32")]
pub const PI: Float = std::f32::consts::PI;

/// The error type used by all `laddu` internal methods
#[derive(Error, Debug)]
pub enum LadduError {
    /// An alias for [`std::io::Error`].
    #[error("IO Error: {0}")]
    IOError(#[from] std::io::Error),
    /// An alias for [`parquet::errors::ParquetError`].
    #[error("Parquet Error: {0}")]
    ParquetError(#[from] parquet::errors::ParquetError),
    /// An alias for [`arrow::error::ArrowError`].
    #[error("Arrow Error: {0}")]
    ArrowError(#[from] arrow::error::ArrowError),
    /// An alias for [`shellexpand::LookupError`].
    #[error("Failed to expand path: {0}")]
    LookupError(#[from] shellexpand::LookupError<std::env::VarError>),
    /// An error which occurs when the user tries to register two amplitudes by the same name to
    /// the same [`Manager`].
    #[error("An amplitude by the name \"{name}\" is already registered by this manager!")]
    RegistrationError {
        /// Name of amplitude which is already registered
        name: String,
    },
    /// An error which occurs when the user tries to use an unregistered amplitude.
    #[error("No registered amplitude with name \"{name}\"!")]
    AmplitudeNotFoundError {
        /// Name of amplitude which failed lookup
        name: String,
    },
    /// An error which occurs when the user tries to parse an invalid string of text, typically
    /// into an enum variant.
    #[error("Failed to parse string: \"{name}\" does not correspond to a valid \"{object}\"!")]
    ParseError {
        /// The string which was parsed
        name: String,
        /// The name of the object it failed to parse into
        object: String,
    },
    /// An error returned by the Rust encoder
    #[error("Encoder error: {0}")]
    EncodeError(#[from] bincode::error::EncodeError),
    /// An error returned by the Rust decoder
    #[error("Decoder error: {0}")]
    DecodeError(#[from] bincode::error::DecodeError),
    /// An error returned by the Python pickle (de)serializer
    #[error("Pickle conversion error: {0}")]
    PickleError(#[from] serde_pickle::Error),
    /// An error type for [`rayon`] thread pools
    #[cfg(feature = "rayon")]
    #[error("Error building thread pool: {0}")]
    ThreadPoolError(#[from] rayon::ThreadPoolBuildError),
    /// An error type for [`numpy`]-related conversions
    #[cfg(feature = "numpy")]
    #[error("Numpy error: {0}")]
    NumpyError(#[from] numpy::FromVecError),
    /// A custom fallback error for errors too complex or too infrequent to warrant their own error
    /// category.
    #[error("{0}")]
    Custom(String),
}

impl Clone for LadduError {
    // This is a little hack because error types are rarely cloneable, but I need to store them in a
    // cloneable box for minimizers and MCMC methods
    fn clone(&self) -> Self {
        let err_string = self.to_string();
        LadduError::Custom(err_string)
    }
}

#[cfg(feature = "python")]
impl From<LadduError> for PyErr {
    fn from(err: LadduError) -> Self {
        use pyo3::exceptions::*;
        let err_string = err.to_string();
        match err {
            LadduError::LookupError(_)
            | LadduError::RegistrationError { .. }
            | LadduError::AmplitudeNotFoundError { .. }
            | LadduError::ParseError { .. } => PyValueError::new_err(err_string),
            LadduError::ParquetError(_)
            | LadduError::ArrowError(_)
            | LadduError::IOError(_)
            | LadduError::EncodeError(_)
            | LadduError::DecodeError(_)
            | LadduError::PickleError(_) => PyIOError::new_err(err_string),
            LadduError::Custom(_) => PyException::new_err(err_string),
            #[cfg(feature = "rayon")]
            LadduError::ThreadPoolError(_) => PyException::new_err(err_string),
            #[cfg(feature = "numpy")]
            LadduError::NumpyError(_) => PyException::new_err(err_string),
        }
    }
}

use serde::{de::DeserializeOwned, Serialize};
use std::{
    fmt::Debug,
    fs::File,
    io::{BufReader, BufWriter},
    path::Path,
};
/// A trait which allows structs with [`Serialize`] and [`Deserialize`](`serde::Deserialize`) to be
/// written and read from files with a certain set of types/extensions.
///
/// Currently, Python's pickle format is supported supported, since it's an easy-to-parse standard
/// that supports floating point values better that JSON or TOML
pub trait ReadWrite: Serialize + DeserializeOwned {
    /// Create a null version of the object which acts as a shell into which Python's `pickle` module
    /// can load data. This generally shouldn't be used to construct the struct in regular code.
    fn create_null() -> Self;
    /// Save a [`serde`]-object to a file path, using the extension to determine the file format
    fn save_as<T: AsRef<str>>(&self, file_path: T) -> Result<(), LadduError> {
        let expanded_path = shellexpand::full(file_path.as_ref())?;
        let file_path = Path::new(expanded_path.as_ref());
        let file = File::create(file_path)?;
        let mut writer = BufWriter::new(file);
        serde_pickle::to_writer(&mut writer, self, Default::default())?;
        Ok(())
    }
    /// Load a [`serde`]-object from a file path, using the extension to determine the file format
    fn load_from<T: AsRef<str>>(file_path: T) -> Result<Self, LadduError> {
        let file_path = Path::new(&*shellexpand::full(file_path.as_ref())?).canonicalize()?;
        let file = File::open(file_path)?;
        let reader = BufReader::new(file);
        serde_pickle::from_reader(reader, Default::default()).map_err(LadduError::from)
    }
}

impl ReadWrite for Status {
    fn create_null() -> Self {
        Status::default()
    }
}
impl ReadWrite for Ensemble {
    fn create_null() -> Self {
        Ensemble::new(Vec::default())
    }
}
impl ReadWrite for Point {
    fn create_null() -> Self {
        Point::default()
    }
}
impl ReadWrite for Particle {
    fn create_null() -> Self {
        Particle::default()
    }
}
impl ReadWrite for Swarm {
    fn create_null() -> Self {
        Swarm::new(SwarmPositionInitializer::Zero {
            n_particles: 0,
            n_dimensions: 0,
        })
    }
}
impl ReadWrite for Model {
    fn create_null() -> Self {
        Model {
            manager: Manager::default(),
            expression: Expression::default(),
        }
    }
}