laddu_amplitudes/
common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
use laddu_core::{
    amplitudes::{Amplitude, AmplitudeID, ParameterLike},
    data::Event,
    resources::{Cache, ParameterID, Parameters, Resources},
    Complex, DVector, Float, LadduError,
};
use serde::{Deserialize, Serialize};

#[cfg(feature = "python")]
use laddu_python::amplitudes::{PyAmplitude, PyParameterLike};
#[cfg(feature = "python")]
use pyo3::prelude::*;

/// A scalar-valued [`Amplitude`] which just contains a single parameter as its value.
#[derive(Clone, Serialize, Deserialize)]
pub struct Scalar {
    name: String,
    value: ParameterLike,
    pid: ParameterID,
}

impl Scalar {
    /// Create a new [`Scalar`] with the given name and parameter value.
    pub fn new(name: &str, value: ParameterLike) -> Box<Self> {
        Self {
            name: name.to_string(),
            value,
            pid: Default::default(),
        }
        .into()
    }
}

#[typetag::serde]
impl Amplitude for Scalar {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid = resources.register_parameter(&self.value);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, _event: &Event, _cache: &Cache) -> Complex<Float> {
        Complex::new(parameters.get(self.pid), 0.0)
    }

    fn compute_gradient(
        &self,
        _parameters: &Parameters,
        _event: &Event,
        _cache: &Cache,
        gradient: &mut DVector<Complex<Float>>,
    ) {
        if let ParameterID::Parameter(ind) = self.pid {
            gradient[ind] = Complex::ONE;
        }
    }
}

/// An Amplitude which represents a single scalar value
///
/// Parameters
/// ----------
/// name : str
///     The Amplitude name
/// value : laddu.ParameterLike
///     The scalar parameter contained in the Amplitude
///
/// Returns
/// -------
/// laddu.Amplitude
///     An Amplitude which can be registered by a laddu.Manager
///
/// See Also
/// --------
/// laddu.Manager
///
#[cfg(feature = "python")]
#[pyfunction(name = "Scalar")]
pub fn py_scalar(name: &str, value: PyParameterLike) -> PyAmplitude {
    PyAmplitude(Scalar::new(name, value.0))
}

/// A complex-valued [`Amplitude`] which just contains two parameters representing its real and
/// imaginary parts.
#[derive(Clone, Serialize, Deserialize)]
pub struct ComplexScalar {
    name: String,
    re: ParameterLike,
    pid_re: ParameterID,
    im: ParameterLike,
    pid_im: ParameterID,
}

impl ComplexScalar {
    /// Create a new [`ComplexScalar`] with the given name, real, and imaginary part.
    pub fn new(name: &str, re: ParameterLike, im: ParameterLike) -> Box<Self> {
        Self {
            name: name.to_string(),
            re,
            pid_re: Default::default(),
            im,
            pid_im: Default::default(),
        }
        .into()
    }
}

#[typetag::serde]
impl Amplitude for ComplexScalar {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_re = resources.register_parameter(&self.re);
        self.pid_im = resources.register_parameter(&self.im);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, _event: &Event, _cache: &Cache) -> Complex<Float> {
        Complex::new(parameters.get(self.pid_re), parameters.get(self.pid_im))
    }

    fn compute_gradient(
        &self,
        _parameters: &Parameters,
        _event: &Event,
        _cache: &Cache,
        gradient: &mut DVector<Complex<Float>>,
    ) {
        if let ParameterID::Parameter(ind) = self.pid_re {
            gradient[ind] = Complex::ONE;
        }
        if let ParameterID::Parameter(ind) = self.pid_im {
            gradient[ind] = Complex::I;
        }
    }
}

/// An Amplitude which represents a complex value
///
/// Parameters
/// ----------
/// name : str
///     The Amplitude name
/// re: laddu.ParameterLike
///     The real part of the complex value contained in the Amplitude
/// im: laddu.ParameterLike
///     The imaginary part of the complex value contained in the Amplitude
///
/// Returns
/// -------
/// laddu.Amplitude
///     An Amplitude which can be registered by a laddu.Manager
///
/// See Also
/// --------
/// laddu.Manager
///
#[cfg(feature = "python")]
#[pyfunction(name = "ComplexScalar")]
pub fn py_complex_scalar(name: &str, re: PyParameterLike, im: PyParameterLike) -> PyAmplitude {
    PyAmplitude(ComplexScalar::new(name, re.0, im.0))
}

/// A complex-valued [`Amplitude`] which just contains two parameters representing its magnitude and
/// phase.
#[derive(Clone, Serialize, Deserialize)]
pub struct PolarComplexScalar {
    name: String,
    r: ParameterLike,
    pid_r: ParameterID,
    theta: ParameterLike,
    pid_theta: ParameterID,
}

impl PolarComplexScalar {
    /// Create a new [`PolarComplexScalar`] with the given name, magnitude (`r`), and phase (`theta`).
    pub fn new(name: &str, r: ParameterLike, theta: ParameterLike) -> Box<Self> {
        Self {
            name: name.to_string(),
            r,
            pid_r: Default::default(),
            theta,
            pid_theta: Default::default(),
        }
        .into()
    }
}

#[typetag::serde]
impl Amplitude for PolarComplexScalar {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_r = resources.register_parameter(&self.r);
        self.pid_theta = resources.register_parameter(&self.theta);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, _event: &Event, _cache: &Cache) -> Complex<Float> {
        Complex::from_polar(parameters.get(self.pid_r), parameters.get(self.pid_theta))
    }

    fn compute_gradient(
        &self,
        parameters: &Parameters,
        _event: &Event,
        _cache: &Cache,
        gradient: &mut DVector<Complex<Float>>,
    ) {
        let exp_i_theta = Complex::cis(parameters.get(self.pid_theta));
        if let ParameterID::Parameter(ind) = self.pid_r {
            gradient[ind] = exp_i_theta;
        }
        if let ParameterID::Parameter(ind) = self.pid_theta {
            gradient[ind] = Complex::<Float>::I
                * Complex::from_polar(parameters.get(self.pid_r), parameters.get(self.pid_theta));
        }
    }
}

/// An Amplitude which represents a complex scalar value in polar form
///
/// Parameters
/// ----------
/// name : str
///     The Amplitude name
/// r: laddu.ParameterLike
///     The magnitude of the complex value contained in the Amplitude
/// theta: laddu.ParameterLike
///     The argument of the complex value contained in the Amplitude
///
/// Returns
/// -------
/// laddu.Amplitude
///     An Amplitude which can be registered by a laddu.Manager
///
/// See Also
/// --------
/// laddu.Manager
///
#[cfg(feature = "python")]
#[pyfunction(name = "PolarComplexScalar")]
pub fn py_polar_complex_scalar(
    name: &str,
    r: PyParameterLike,
    theta: PyParameterLike,
) -> PyAmplitude {
    PyAmplitude(PolarComplexScalar::new(name, r.0, theta.0))
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use laddu_core::{data::test_dataset, parameter, Manager, PI};
    use std::sync::Arc;

    #[test]
    fn test_scalar_creation_and_evaluation() {
        let mut manager = Manager::default();
        let amp = Scalar::new("test_scalar", parameter("test_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into(); // Direct amplitude evaluation
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let params = vec![2.5];
        let result = evaluator.evaluate(&params);

        assert_relative_eq!(result[0].re, 2.5);
        assert_relative_eq!(result[0].im, 0.0);
    }

    #[test]
    fn test_scalar_gradient() {
        let mut manager = Manager::default();
        let amp = Scalar::new("test_scalar", parameter("test_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.norm_sqr(); // |f(x)|^2
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let params = vec![2.0];
        let gradient = evaluator.evaluate_gradient(&params);

        // For |f(x)|^2 where f(x) = x, the derivative should be 2x
        assert_relative_eq!(gradient[0][0].re, 4.0);
        assert_relative_eq!(gradient[0][0].im, 0.0);
    }

    #[test]
    fn test_complex_scalar_evaluation() {
        let mut manager = Manager::default();
        let amp = ComplexScalar::new("test_complex", parameter("re_param"), parameter("im_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into();
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let params = vec![1.5, 2.5]; // Real and imaginary parts
        let result = evaluator.evaluate(&params);

        assert_relative_eq!(result[0].re, 1.5);
        assert_relative_eq!(result[0].im, 2.5);
    }

    #[test]
    fn test_complex_scalar_gradient() {
        let mut manager = Manager::default();
        let amp = ComplexScalar::new("test_complex", parameter("re_param"), parameter("im_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.norm_sqr(); // |f(x + iy)|^2
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let params = vec![3.0, 4.0]; // Real and imaginary parts
        let gradient = evaluator.evaluate_gradient(&params);

        // For |f(x + iy)|^2, partial derivatives should be 2x and 2y
        assert_relative_eq!(gradient[0][0].re, 6.0);
        assert_relative_eq!(gradient[0][0].im, 0.0);
        assert_relative_eq!(gradient[0][1].re, 8.0);
        assert_relative_eq!(gradient[0][1].im, 0.0);
    }

    #[test]
    fn test_polar_complex_scalar_evaluation() {
        let mut manager = Manager::default();
        let amp =
            PolarComplexScalar::new("test_polar", parameter("r_param"), parameter("theta_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into();
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let r = 2.0;
        let theta = PI / 4.3;
        let params = vec![r, theta];
        let result = evaluator.evaluate(&params);

        // r * (cos(theta) + i*sin(theta))
        assert_relative_eq!(result[0].re, r * theta.cos());
        assert_relative_eq!(result[0].im, r * theta.sin());
    }

    #[test]
    fn test_polar_complex_scalar_gradient() {
        let mut manager = Manager::default();
        let amp =
            PolarComplexScalar::new("test_polar", parameter("r_param"), parameter("theta_param"));
        let aid = manager.register(amp).unwrap();

        let dataset = Arc::new(test_dataset());
        let expr = aid.into(); // f(r,θ) = re^(iθ)
        let model = manager.model(&expr);
        let evaluator = model.load(&dataset);

        let r = 2.0;
        let theta = PI / 4.3;
        let params = vec![r, theta];
        let gradient = evaluator.evaluate_gradient(&params);

        // d/dr re^(iθ) = e^(iθ), d/dθ re^(iθ) = ire^(iθ)
        assert_relative_eq!(gradient[0][0].re, Float::cos(theta));
        assert_relative_eq!(gradient[0][0].im, Float::sin(theta));
        assert_relative_eq!(gradient[0][1].re, -r * Float::sin(theta));
        assert_relative_eq!(gradient[0][1].im, r * Float::cos(theta));
    }
}