1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use num_bigint::BigInt;
use ark_bls12_381::{Bls12_381, Config, Fr as F, G1Affine, G1Projective, G2Affine, G2Projective};
use ark_ec::{
    bls12::{G1Prepared, G2Prepared},
    pairing::Pairing,
    short_weierstrass::Affine,
    AffineRepr, CurveGroup,
};
use ark_ff::{Field, UniformRand, Zero};
use ark_poly::{
    polynomial,
    univariate::{DenseOrSparsePolynomial, DensePolynomial},
    DenseUVPolynomial, Polynomial,
};
use ark_std::{rand, One};

use derive_more::Display;

#[derive(Debug, Display)]
pub enum ProofError {
    #[display(fmt = "Cannot generate valid proof: division remainder is non-zero")]
    InvalidProof,
    #[display(fmt = "Polynomial division failed")]
    DivisionError,
}
impl std::error::Error for ProofError {}

pub struct KZGCommitment {
    trusted_setup_g1: Vec<G1Affine>,
    trusted_setup_g2: Vec<G2Affine>,
}

impl KZGCommitment {
    pub fn new(degree: usize) -> Self {
        let (trusted_setup_g1, trusted_setup_g2) = Self::trusted_setup(degree);
        Self {
            trusted_setup_g1,
            trusted_setup_g2,
        }
    }

    fn lagrange_interpolation(points: &Vec<(F, F)>) -> DensePolynomial<F> {
        let mut result: DensePolynomial<F> = DensePolynomial::zero();
        for (index, &(x_i, y_i)) in points.into_iter().enumerate() {
            let mut term = DensePolynomial::from_coefficients_vec(vec![y_i]);
            for (j, &(x_j, _)) in points.iter().enumerate() {
                if j != index {
                    let scalar = (x_i - x_j).inverse().unwrap();
                    let numerator = DensePolynomial::from_coefficients_vec(vec![
                        -x_j * scalar,
                        F::one() * scalar,
                    ]);
                    term = &term * &numerator;
                }
            }

            result += &term;
        }
        result
    }

    fn trusted_setup(degree: usize) -> (Vec<G1Affine>, Vec<G2Affine>) {
        let mut rng = ark_std::test_rng();
        let tau = F::rand(&mut rng);
        let mut trusted_setup_g1: Vec<G1Affine> = Vec::new();
        let mut trusted_setup_g2: Vec<G2Affine> = Vec::new();
        for i in 0..degree {
            let tau_i = tau.pow([i as u64]);
            trusted_setup_g1.push((G1Affine::generator() * tau_i).into_affine());
            trusted_setup_g2.push((G2Affine::generator() * tau_i).into_affine());
        }

        (trusted_setup_g1, trusted_setup_g2)
    }

    pub fn vector_to_polynomial(vector: &Vec<i32>) -> DensePolynomial<F> {
        let y_s: Vec<F> = vector.iter().map(|&y| F::from(y)).collect();
        let x_s: Vec<F> = (0..vector.len()).map(|val| F::from(val as u32)).collect();
        let points: Vec<(F, F)> = x_s.into_iter().zip(y_s.into_iter()).collect();
        Self::lagrange_interpolation(&points)
    }

    fn evaluate_polynomial_at_g1_setup(&self, polynomial: &DensePolynomial<F>) -> G1Affine {
        let mut result: G1Affine = G1Affine::zero();
        let poly_coeffs = polynomial.coeffs();
        for (index, coeff) in poly_coeffs.into_iter().enumerate() {
            let temp = (self.trusted_setup_g1[index] * coeff).into_affine();
            result = (result + temp).into_affine();
        }
        result
    }

    fn evaluate_polynomial_at_g2_setup(&self, polynomial: &DensePolynomial<F>) -> G2Affine {
        let mut result: G2Affine = G2Affine::zero();
        let poly_coeffs = polynomial.coeffs();
        for (index, coeff) in poly_coeffs.into_iter().enumerate() {
            let temp = (self.trusted_setup_g2[index] * coeff).into_affine();
            result = (result + temp).into_affine();
        }
        result
    }

    pub fn commit_polynomial(&self, polynomial: &DensePolynomial<F>) -> G1Affine {
        self.evaluate_polynomial_at_g1_setup(polynomial)
    }

    pub fn generate_proof(
        &self,
        polynomial: &DensePolynomial<F>,
        points: &Vec<(i32, i32)>,
    ) -> Result<G1Affine, ProofError> {
        // lagrange interpolation
        let points_ff: Vec<(F, F)> = points.into_iter().map(|&(x, y)| (F::from(x), F::from(y))).collect();
        let point_polynomial = Self::lagrange_interpolation(&points_ff);
        let numerator = polynomial - &point_polynomial;
        let mut denominator = DensePolynomial::from_coefficients_vec(vec![F::from(1)]);
        for (x, _) in points_ff {
            denominator =
                &denominator * &DensePolynomial::from_coefficients_vec(vec![-x, F::from(1)]);
        }
        let (q, r) = DenseOrSparsePolynomial::from(numerator)
            .divide_with_q_and_r(&DenseOrSparsePolynomial::from(denominator))
            .unwrap();

        if r != DensePolynomial::zero() {
            return Err(ProofError::InvalidProof);
        }

        Ok(self.evaluate_polynomial_at_g1_setup(&q))
    }

    pub fn verify_proof(
        &self,
        commitment: &G1Affine,
        points: &Vec<(i32, i32)>,
        proof: &G1Affine,
    ) -> bool {
        let points_ff: Vec<(F, F)> = points.into_iter().map(|&(x, y)| (F::from(x), F::from(y))).collect();
        let point_polynomial = Self::lagrange_interpolation(&points_ff);
        let mut vanishing_polynomial = DensePolynomial::from_coefficients_vec(vec![F::from(1)]);
        for (x, _) in points_ff {
            vanishing_polynomial = &vanishing_polynomial
                * &DensePolynomial::from_coefficients_vec(vec![-x, F::from(1)]);
        }

        let z_s: G2Affine = self.evaluate_polynomial_at_g2_setup(&vanishing_polynomial);
        let i_s: G1Affine = self.evaluate_polynomial_at_g1_setup(&point_polynomial);

        let lhs = Bls12_381::pairing(proof, z_s);
        let g1_lhs = *commitment - i_s;
        let rhs = Bls12_381::pairing(g1_lhs.into_affine(), G2Affine::generator());

        lhs == rhs
    }
}