1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//! Platform-agnostic  KXTJ3-1057 accelerometer driver which uses I²C via
//! [embedded-hal]. This driver implements the [`Accelerometer`][acc-trait]
//! and [`RawAccelerometer`][raw-trait] traits from the [accelerometer] crate.
//!
//! [embedded-hal]: https://docs.rs/embedded-hal
//! [accelerometer]: https://docs.rs/accelerometer
//! [acc-trait]: https://docs.rs/accelerometer/latest/accelerometer/trait.Accelerometer.html
//! [raw-trait]: https://docs.rs/accelerometer/latest/accelerometer/trait.RawAccelerometer.html
//!

#![no_std]

pub use accelerometer;
use accelerometer::error::Error as AccelerometerError;
use accelerometer::vector::{F32x3, I16x3};
use accelerometer::{Accelerometer, RawAccelerometer};
use embedded_hal::blocking::i2c::{self, WriteRead};

mod register;

use register::*;
pub use register::{DataRate, Mode, Range, Register, SlaveAddr};

/// Accelerometer errors, generic around another error type `E` representing
/// an (optional) cause of this error.
#[derive(Debug)]
pub enum Error<BusError, PinError> {
    /// I²C bus error
    Bus(BusError),
    Pin(PinError),

    /// Invalid data rate selection
    InvalidDataRate,

    /// Invalid selects the acceleration range
    InvalidRange,

    /// Attempted to write to a read-only register
    WriteToReadOnly,

    /// Invalid address provided
    WrongAddress,
}

/// `KXTJ3-1057` driver.
pub struct Kxtj3<I2C> {
    /// Underlying I²C device
    i2c: I2C,

    /// Current I²C slave address
    address: u8,
}

impl<I2C, E> Kxtj3<I2C>
where
    I2C: WriteRead<Error = E> + i2c::Write<Error = E>,
{
    
    /// Create a new KXTJ3-1057 driver from the given I2C peripheral.
    /// Default is Hz_400 LowPower.
    /// An example using the [esp_idf_hal](https://esp-rs.github.io/esp-idf-hal/esp_idf_hal):
    ///     
    ///     use esp_idf_hal::i2c::*;
    ///     use esp_idf_hal::peripherals::Peripherals;
    ///     use esp_idf_hal::prelude::*;
    ///     use kxtj3_1057::Kxtj3;
    ///           
    ///     let peripherals = Peripherals::take().unwrap();
    ///     let i2c = peripherals.i2c0;
    ///     
    ///     let sda = peripherals.pins.gpio10;
    ///     let scl = peripherals.pins.gpio8;
    ///     let config = I2cConfig::new().baudrate(400.kHz().into()).scl_enable_pullup(true).sda_enable_pullup(true);
    /// 
    ///     let i2c = I2cDriver::new(i2c, sda, scl, &config).unwrap();     
    ///     let kxtj3 = Kxtj3::new(i2c, kxtj3_1057::SlaveAddr::Default).unwrap();     

    pub fn new(i2c: I2C, address: SlaveAddr) -> Result<Self, Error<E, core::convert::Infallible>> {
        let mut kxtj3 = Kxtj3 {
            i2c,
            address: address.addr(),
        };

        if kxtj3.get_device_id()? != DEVICE_ID {
            return Err(Error::WrongAddress);
        }

        Ok(kxtj3)
    }

    /// Write a byte to the given register.
    fn write_register(
        &mut self,
        register: Register,
        value: u8,
    ) -> Result<(), Error<E, core::convert::Infallible>> {
        if register.read_only() {
            return Err(Error::WriteToReadOnly);
        }

        self.i2c
            .write(self.address, &[register.addr(), value])
            .map_err(Error::Bus)
    }

    /// Read a byte from the given register.
    fn read_register(
        &mut self,
        register: Register,
    ) -> Result<u8, Error<E, core::convert::Infallible>> {
        let mut data = [0];
        self.i2c
            .write_read(self.address, &[register.addr()], &mut data)
            .map_err(Error::Bus)
            .and(Ok(data[0]))
    }

    /// `WHO_AM_I` register.
    pub fn get_device_id(&mut self) -> Result<u8, Error<E, core::convert::Infallible>> {
        self.read_register(Register::WHOAMI)
    }

    /// Controls the operating mode of the KXTJ3 .
    /// `CTRL_REG1`: `PC1` bit , CTRL_REG1`: `RES` bit.
    pub fn set_mode(&mut self, mode: Mode) -> Result<(), Error<E, core::convert::Infallible>> {
        self.register_clear_bits(Register::CTRL1, PC1_EN)?;
        match mode {
            Mode::LowPower => {
                self.register_clear_bits(Register::CTRL1, RES_EN)?;
                self.register_set_bits(Register::CTRL1, PC1_EN)?;
            }
            Mode::Standby => {}
            Mode::HighResolution => {
                self.register_set_bits(Register::CTRL1, RES_EN)?;
                self.register_set_bits(Register::CTRL1, PC1_EN)?;
            }
        }

        Ok(())
    }

    /// Read the current operating mode.
    pub fn get_mode(&mut self) -> Result<Mode, Error<E, core::convert::Infallible>> {
        let ctrl1 = self.read_register(Register::CTRL1)?;

        let is_pc1_set = (ctrl1 >> 7) & 0x01 != 0;
        let is_res_set = (ctrl1 >> 6) & 0x01 != 0;

        let mode = match (is_pc1_set, is_res_set) {
            (false, _) => Mode::Standby,
            (true, false) => Mode::LowPower,
            (true, true) => Mode::HighResolution,
        };

        Ok(mode)
    }

    /// Data rate selection.
    pub fn set_datarate(
        &mut self,
        datarate: DataRate,
    ) -> Result<(), Error<E, core::convert::Infallible>> {
        self.register_clear_bits(Register::CTRL1, PC1_EN)?;
        self.modify_register(Register::DATA_CTRL, |mut data_ctrl| {
            // Mask off highest 4 bits
            data_ctrl &= !ODR_MASK;
            // Write in lowest 4 bits
            data_ctrl |= datarate.bits();

            data_ctrl
        })?;
        self.register_set_bits(Register::CTRL1, PC1_EN)
    }

    /// Read the current data selection rate.
    pub fn get_datarate(&mut self) -> Result<DataRate, Error<E, core::convert::Infallible>> {
        let data_ctrl = self.read_register(Register::DATA_CTRL)?;
        let odr = data_ctrl & 0x0F;

        DataRate::try_from(odr).map_err(|_| Error::InvalidDataRate)
    }

    /// Set the acceleration Range
    pub fn set_range(&mut self, range: Range) -> Result<(), Error<E, core::convert::Infallible>> {
        self.register_clear_bits(Register::CTRL1, PC1_EN)?;
        self.modify_register(Register::CTRL1, |mut ctrl1| {
            ctrl1 &= !GSEL_MASK;
            ctrl1 |= range.bits() << 2;

            ctrl1
        })?;
        self.register_set_bits(Register::CTRL1, PC1_EN)
    }

    /// Read the acceleration Range
    pub fn get_range(&mut self) -> Result<Range, Error<E, core::convert::Infallible>> {
        let ctrl1 = self.read_register(Register::CTRL1)?;
        let gsel = (ctrl1 >> 2) & 0x07;

        Range::try_from(gsel).map_err(|_| Error::InvalidRange)
    }

    /// Read from the registers for each of the 3 axes.
    fn read_accel_bytes(&mut self) -> Result<[u8; 6], Error<E, core::convert::Infallible>> {
        let mut data = [0u8; 6];

        self.i2c
            .write_read(self.address, &[Register::XOUT_L.addr() | 0x80], &mut data)
            .map_err(Error::Bus)
            .and(Ok(data))
    }

    /// Modify a register's value. Read the current value of the register,
    /// update the value with the provided function, and set the register to
    /// the return value.
    fn modify_register<F>(
        &mut self,
        register: Register,
        f: F,
    ) -> Result<(), Error<E, core::convert::Infallible>>
    where
        F: FnOnce(u8) -> u8,
    {
        let value = self.read_register(register)?;

        self.write_register(register, f(value))
    }

    /// Clear the given bits in the given register. For example:
    ///
    ///     kxtj3.register_clear_bits(0b0110)
    ///
    /// This call clears (sets to 0) the bits at index 1 and 2. Other bits of the register are not touched.
    pub fn register_clear_bits(
        &mut self,
        reg: Register,
        bits: u8,
    ) -> Result<(), Error<E, core::convert::Infallible>> {
        self.modify_register(reg, |v| v & !bits)
    }

    /// Set the given bits in the given register. For example:
    ///
    ///     kxtj3.register_set_bits(0b0110)
    ///
    /// This call sets to 1 the bits at index 1 and 2. Other bits of the register are not touched.
    pub fn register_set_bits(
        &mut self,
        reg: Register,
        bits: u8,
    ) -> Result<(), Error<E, core::convert::Infallible>> {
        self.modify_register(reg, |v| v | bits)
    }
}

impl<I2C, E> RawAccelerometer<I16x3> for Kxtj3<I2C>
where
    I2C: WriteRead<Error = E> + i2c::Write<Error = E>,
    E: core::fmt::Debug,
{
    type Error = Error<E, core::convert::Infallible>;

    fn accel_raw(&mut self) -> Result<I16x3, AccelerometerError<Self::Error>> {
        let accel_bytes = self.read_accel_bytes()?;

        let x = i16::from_le_bytes(accel_bytes[0..2].try_into().unwrap());
        let y = i16::from_le_bytes(accel_bytes[2..4].try_into().unwrap());
        let z = i16::from_le_bytes(accel_bytes[4..6].try_into().unwrap());

        Ok(I16x3::new(x, y, z))
    }
}

impl<I2C, E> Accelerometer for Kxtj3<I2C>
where
    I2C: WriteRead<Error = E> + i2c::Write<Error = E>,
    E: core::fmt::Debug,
{
    type Error = Error<E, core::convert::Infallible>;

    /// Get normalized ±g reading from the accelerometer.
    fn accel_norm(&mut self) -> Result<F32x3, AccelerometerError<Self::Error>> {
        let mode = self.get_mode()?;
        let range = self.get_range()?;

        // See "Mechanical Specifications" in the datasheet to find the values below.

        // Depending on which Mode we are operating in, the data has different
        // resolution. Using this knowledge, we determine how many bits the
        // data needs to be shifted. This is necessary because the raw data
        // is in left-justified two's complement and we would like for it to be
        // right-justified instead.

        let (scale, shift) = match (mode, range) {
            // High Resolution mode - 14-bit data output
            (Mode::HighResolution, Range::G8_14Bit) => (0.001, 2),
            (Mode::HighResolution, Range::G16_14Bit) => (0.002, 2),
            // High Resolution mode-12 bit data output
            (Mode::HighResolution, Range::G2) => (0.001, 4),
            (Mode::HighResolution, Range::G4) => (0.002, 4),
            (Mode::HighResolution, Range::G8) => (0.004, 4),
            (Mode::HighResolution, Range::G16_1)
            | (Mode::HighResolution, Range::G16_2)
            | (Mode::HighResolution, Range::G16_3) => (0.008, 4),

            // Low power mode
            (Mode::LowPower, Range::G2) => (0.015, 8),
            (Mode::LowPower, Range::G4) => (0.031, 8),
            (Mode::LowPower, Range::G8) => (0.062, 8),
            (Mode::LowPower, Range::G16_1)
            | (Mode::LowPower, Range::G16_2)
            | (Mode::LowPower, Range::G16_3) => (0.125, 8),

            _ => (0.0, 0),
        };

        let acc_raw = self.accel_raw()?;
        let x = (acc_raw.x >> shift) as f32 * scale;
        let y = (acc_raw.y >> shift) as f32 * scale;
        let z = (acc_raw.z >> shift) as f32 * scale;

        Ok(F32x3::new(x, y, z))
    }

    /// Get the sample rate of the accelerometer data.
    fn sample_rate(&mut self) -> Result<f32, AccelerometerError<Self::Error>> {
        Ok(self.get_datarate()?.sample_rate())
    }
}