1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! A simple 2D vector.

use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

/// A 2D vector.
///
/// This can be interpreted as a point in 2-space, a translation, a
/// vector, or a complex number; the interpretation is not indicated
/// in the type.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
pub struct Vec2 {
    pub x: f64,
    pub y: f64,
}

impl Vec2 {
    /// Create a new vector.
    #[inline]
    pub fn new(x: f64, y: f64) -> Vec2 {
        Vec2 { x, y }
    }

    /// Dot product of two vectors.
    #[inline]
    pub fn dot(&self, other: Vec2) -> f64 {
        self.x * other.x + self.y * other.y
    }

    /// Cross product of two vectors.
    ///
    /// This is signed so that (0, 1) × (1, 0) = 1.
    #[inline]
    pub fn cross(&self, other: Vec2) -> f64 {
        self.x * other.y - self.y * other.x
    }

    /// Magnitude of vector.
    #[inline]
    pub fn hypot(&self) -> f64 {
        self.x.hypot(self.y)
    }

    /// Magnitude squared of vector.
    #[inline]
    pub fn hypot2(&self) -> f64 {
        self.dot(*self)
    }

    /// Angle of vector.
    ///
    /// If the vector is interpreted as a complex number, this is the argument.
    #[inline]
    pub fn atan2(&self) -> f64 {
        self.y.atan2(self.x)
    }

    /// A unit vector of the given angle.
    ///
    /// With `th` at zero, the result is the positive X unit vector, and
    /// at π/2, it is the positive Y unit vector.
    ///
    /// Thus, in a Y-down coordinate system (as is common for graphics),
    /// it is a clockwise rotation, and in Y-up (traditional for math), it
    /// is anti-clockwise. This convention is consistent with
    /// [`Affine::rotate`](struct.Affine.html#method.rotate).
    #[inline]
    pub fn from_angle(th: f64) -> Vec2 {
        Vec2 {
            x: th.cos(),
            y: th.sin(),
        }
    }

    /// Linearly interpolate between two points.
    #[inline]
    pub fn lerp(&self, other: Vec2, t: f64) -> Vec2 {
        *self + t * (other - *self)
    }
}

impl From<(f64, f64)> for Vec2 {
    #[inline]
    fn from(v: (f64, f64)) -> Vec2 {
        Vec2 { x: v.0, y: v.1 }
    }
}

impl From<Vec2> for (f64, f64) {
    #[inline]
    fn from(v: Vec2) -> (f64, f64) {
        (v.x, v.y)
    }
}

impl Add for Vec2 {
    type Output = Vec2;

    #[inline]
    fn add(self, other: Vec2) -> Vec2 {
        Vec2 {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl AddAssign for Vec2 {
    #[inline]
    fn add_assign(&mut self, other: Vec2) {
        *self = Vec2 {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl Sub for Vec2 {
    type Output = Vec2;

    #[inline]
    fn sub(self, other: Vec2) -> Vec2 {
        Vec2 {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl SubAssign for Vec2 {
    #[inline]
    fn sub_assign(&mut self, other: Vec2) {
        *self = Vec2 {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl Mul<f64> for Vec2 {
    type Output = Vec2;

    #[inline]
    fn mul(self, other: f64) -> Vec2 {
        Vec2 {
            x: self.x * other,
            y: self.y * other,
        }
    }
}

impl MulAssign<f64> for Vec2 {
    #[inline]
    fn mul_assign(&mut self, other: f64) {
        *self = Vec2 {
            x: self.x * other,
            y: self.y * other,
        };
    }
}

impl Mul<Vec2> for f64 {
    type Output = Vec2;

    #[inline]
    fn mul(self, other: Vec2) -> Vec2 {
        other * self
    }
}

impl Div<f64> for Vec2 {
    type Output = Vec2;

    /// Note: division by a scalar is implemented by multiplying by the reciprocal.
    ///
    /// This is more efficient but has different roundoff behavior than division.
    #[inline]
    fn div(self, other: f64) -> Vec2 {
        self * other.recip()
    }
}

impl DivAssign<f64> for Vec2 {
    #[inline]
    fn div_assign(&mut self, other: f64) {
        *self *= other.recip();
    }
}

impl Neg for Vec2 {
    type Output = Vec2;

    #[inline]
    fn neg(self) -> Vec2 {
        Vec2 {
            x: -self.x,
            y: -self.y,
        }
    }
}

// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Vec2> for mint::Vector2<f64> {
    #[inline]
    fn from(p: Vec2) -> mint::Vector2<f64> {
        mint::Vector2 { x: p.x, y: p.y }
    }
}

#[cfg(feature = "mint")]
impl From<mint::Vector2<f64>> for Vec2 {
    #[inline]
    fn from(p: mint::Vector2<f64>) -> Vec2 {
        Vec2 { x: p.x, y: p.y }
    }
}