kryst 3.2.0

Krylov subspace and preconditioned iterative solvers for dense and sparse linear systems, with shared and distributed memory parallelism.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
<!--
    kryst: PETSc-style Krylov solvers and preconditioners for Rust.
    This README describes the main features, usage, and documentation pointers.
-->

# kryst

[![Crates.io](https://img.shields.io/crates/v/kryst.svg)](https://crates.io/crates/kryst)
[![Documentation](https://docs.rs/kryst/badge.svg)](https://docs.rs/kryst)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

High-performance Krylov subspace and preconditioned iterative solvers for dense and sparse linear systems, with advanced preconditioning strategies and automated parameter optimization.

## Features

### Iterative Solvers
- **Krylov Methods**: CG, PCG, GMRES, FGMRES, BiCGStab, CGS, QMR, TFQMR, MINRES, CGNR
- **Direct Methods**: LU and QR factorization via PREONLY solver type
- **Parallel Support**: Shared-memory (Rayon) and distributed-memory (MPI) parallelism

### Preconditioners

#### Basic Preconditioners
- **Jacobi**: Diagonal scaling preconditioner
- **Block Jacobi**: Block-wise diagonal preconditioning
- **SOR/SSOR**: Successive Over-Relaxation methods
- **None**: No preconditioning (identity)

#### Incomplete Factorizations
- **ILU(0)**: Zero fill-in incomplete LU factorization
- **ILU(k)**: Incomplete LU with k levels of fill-in
- **ILUT**: Threshold-based incomplete LU factorization
- **ILUTP**: ILUT with partial pivoting
- **ILUP**: Incomplete LU with partial pivoting

#### Advanced Preconditioners
- **Chebyshev**: Enhanced polynomial preconditioning with eigenvalue estimation
- **AMG**: Algebraic Multigrid with configurable smoothing parameters  
- **ASM**: Additive Schwarz Method (domain decomposition)
- **Approximate Inverse**: SPAI-type approximate inverse preconditioners

#### Composite Preconditioning
- **PC-Chaining**: Sequential application of multiple preconditioners via `pc_chain` option
- **Enhanced Chebyshev**: Matrix-aware polynomial preconditioning with automatic eigenvalue estimation
- **Smoothed AMG**: Configurable pre- and post-smoothing parameters (`amg_nu_pre`, `amg_nu_post`)

#### MPI support notes
- **MPI-local (per-rank)**: AMG, Chebyshev, SOR/SSOR, ILU/ILUT/ILUP/ILUTP, Approximate Inverse, LU/QR (dense-direct). These operate on the local block of a distributed matrix.
- **Distributed-capable**: ASM over `DistCsrOp`, Block Jacobi on `DistCsrOp`, and `SuperLU_DIST` (when the `superlu_dist` feature is enabled).
- **PC-Chaining** works on MPI, but each preconditioner in the chain keeps its local vs distributed behavior.

### Monitoring & Automation

- **Iteration Monitoring**: Real-time convergence tracking with `IterationMonitor`
- **Parameter Tuning**: Automated optimization with `ParameterTuner` and grid search
- **Data Export**: CSV output for convergence analysis with `enable_csv_logging()`
- **Performance Metrics**: Comprehensive timing and convergence rate analysis

### Scalar Modes

- **Real (default)**: Builds without extra features keep all public APIs monomorphic on `f64`.
- **Complex (`--features complex`)**: Internals promote Kryst's scalar alias `S` to `num_complex::Complex64` while the Matrix Market tooling converts boundary data to and from complex storage.

`S` is the internal scalar alias and `R` is its real partner. In real builds
`S = R = f64`. In complex builds `S = Complex64` and `R = f64`.

### Cargo Features

| Feature | Enables | Notes |
| --- | --- | --- |
| `mpi` | MPI communication backend | Requires MPI installed; examples run via `mpirun` |
| `complex` | Complex scalar `S` | Classical and pipelined GMRES/FGMRES variants are supported |
| `backend-faer` | Dense/CSR backends and most PCs | Default feature |
| backend flags | Direct solvers / matrix backends | e.g. `superlu_dist` (where available) |

### Cargo feature summary

- `mpi` — enable distributed-memory execution via the `mpi` crate. Optional and independent from Rayon.
- `rayon` — turn on shared-memory parallel kernels. Combine with `-ksp_threads` to size the worker pool.
- `complex` — lift internal kernels to `Complex64` while keeping the public API monomorphic on `f64` inputs.
- `logging` — route internal tracing to the `log` facade for integration with env_logger or similar backends.
- `backend-faer` + `rayon` + `mpi` — supported for distributed runs with parallel local kernels; see
  `docs/matrix_features.md` for the expected feature combinations and matrix capabilities.

### Latency-aware solver knobs

The Krylov drivers expose command-line options to balance global reductions
against additional local work. The most common flags mirror PETSc's `-ksp_*`
options and can be combined with the deterministic reduction feature for
reproducible CI runs.

| Flag | Default | Effect |
| --- | --- | --- |
| `-ksp_cg_variant classic|pipelined` | `classic` | Select the CG algorithm. `pipelined` enables a single-reduction Chronopoulos–Gear variant with asynchronous collectives. |
| `-ksp_reproducible` | `false` | Enable deterministic reductions (rank-ordered MPI sums and fixed-order local kernels). |
| `-ksp_threads <N>` | unset | Request `N` Rayon workers (requires `--features rayon`). Ignored in builds without Rayon. |
| `-ksp_gmres_variant classical|pipelined|sstep[:s]` | `classical` | Select the GMRES variant. `sstep` accepts an optional block size `s` (currently parsed but reported as not yet implemented). |
| `-ksp_residual_replacement <iters>` | `50` | Force periodic residual recomputation in pipelined CG to control drift (`0` disables). |
| `-ksp_trust_region <radius>` | unset | Enable CG trust-region safeguarding with the provided radius. |
| `-ksp_reorthog never|ifneeded|always` | `ifneeded` | Control Gram-Schmidt reorthogonalisation in GMRES and FGMRES. |

#### Rayon tuning

Recommended settings for local kernels:

- `-ksp_threads <N>` selects the Rayon worker count used by Kryst kernels (shared-memory only).
- `KRYST_PAR_CUTOFF=<rows>` controls the minimum CSR row count before parallel SpMV is used
  (default `4096`); raise it if you see parallel overhead on small problems.

Legacy `-ksp_cg_pipelined` remains available as an alias for
`-ksp_cg_variant pipelined`. For bit-for-bit reproducibility, combine
`-ksp_reproducible` with `-ksp_threads 1`. When Rayon is enabled with more
than one worker, runs remain deterministic for a fixed thread count but may
differ across thread-count configurations.

#### Reproducible reductions

When `-ksp_reproducible` is enabled the solver switches to rank-ordered MPI
reductions and fixed-order local kernels. This guarantees bit-for-bit equality
between runs that use the same communicator size and Rayon thread count. For
strict reproducibility we recommend pinning Rayon to a single thread via
`-ksp_threads 1` (or the `RAYON_NUM_THREADS` environment variable); otherwise,
results remain deterministic for the configured thread count but may differ
between thread-count configurations.

### Reproducibility recipe (MPI + Rayon)

Use this configuration when validating deterministic reductions:

```bash
RAYON_NUM_THREADS=1 mpirun -n 4 cargo run --example mpi_parallel_demo --features "mpi rayon" -- \
  -ksp_reproducible -ksp_threads 1
```

Each solver also records the number of global reductions performed in
`SolveStats::counters.num_global_reductions`, making it easy to assert expected
latency costs in automated tests.

### Hybrid MPI + Rayon scaling recipes

Use these rules of thumb when combining MPI ranks with Rayon threads:

- **Throughput-oriented runs**: allocate threads per rank so that
  `(MPI ranks) × (threads per rank)` matches physical cores. Start with
  `-ksp_threads 2-4` per rank and adjust based on local cache behavior and
  kernel mix (SpMV vs. ILU/ASM work).
- **Reproducibility-oriented runs**: keep `-ksp_reproducible` enabled and
  fix the thread count per rank (`-ksp_threads 1` or `RAYON_NUM_THREADS=1`).
  Results remain deterministic for a fixed communicator size and thread count.

Example hybrid runs:

```bash
# Throughput-oriented: 4 ranks × 4 threads (16 cores total)
RAYON_NUM_THREADS=4 mpirun -n 4 cargo run --example mpi_parallel_demo --features "mpi rayon" -- \
  -ksp_threads 4

# Reproducible: 4 ranks × 1 thread
RAYON_NUM_THREADS=1 mpirun -n 4 cargo run --example mpi_parallel_demo --features "mpi rayon" -- \
  -ksp_reproducible -ksp_threads 1
```

For performance studies across MPI-only, Rayon-only, and hybrid builds, run the
`mpi_rayon_suite` benchmark via `cargo bench` (see `scripts/bench_mpi_rayon.sh`)
to compare ILU and ASM preconditioner workloads on small/medium/large matrices.

### Architecture
- **PETSc-style API**: Unified KSP context for runtime solver selection
- **Command-line Options**: Complete options database with 50+ parameters
- **Trait-based Design**: Extensible for custom matrices and preconditioners
- **Memory Efficiency**: In-place operations and configurable workspace management
- **High Performance**: Optimized inner kernels with SIMD and parallelization
- **Matrix-Free Operators**: Shell matrices for callback-based MatVec operations
- **Setup Reuse**: Two-phase API with preconditioner and workspace recycling
- **CSR utilities**: zero-copy `row_ptr`/`col_idx`/`values` access and sparse
  kernels (`spgemm`, CSR Galerkin triple product)

## Installation

Add to your `Cargo.toml`:

```toml
[dependencies]
kryst = "1.0"
```

### Feature Flags

```toml
[features]
default = []                  # Opt in to exactly the features you need
rayon = ["dep:rayon", "dep:num_cpus"]
mpi = ["dep:mpi"]
logging = ["dep:log"]
complex = ["dep:num-complex"]
simd = []                     # Auto-tuned std::simd sparse mat-vec kernels
x86_intrinsics = []           # Optional x86_64 gather/prefetch micro-tuning
```

Enabling the `simd` feature activates the runtime SpMV planner, which selects
between the scalar CSR baseline, a gather-based SIMD kernel, and a SELL-C-σ
kernel. Plans are built once per matrix (e.g., during AMG setup) and cached for
deterministic, allocation-free application time.

## Quick Start

### Basic Usage with KspContext (Recommended)

```rust
use kryst::prelude::*;
use kryst::matrix::op::DenseOp;
use faer::Mat;
use std::sync::Arc;

// Create a 100×100 test system
let n = 100;
let mat = Mat::<f64>::from_fn(n, n, |i, j| {
    if i == j { 4.0 } else if (i as i32 - j as i32).abs() == 1 { -1.0 } else { 0.0 }
});
let a = Arc::new(DenseOp::<f64>::new(Arc::new(mat)));
let rhs = vec![1.0; n];
let mut solution = vec![0.0; n];

// Configure solver and preconditioner
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
   .set_pc_type(PcType::Jacobi, None)?
   .set_operators(a.clone(), None);
ksp.rtol = 1e-8;
ksp.maxits = 1000;

// Setup once then solve
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
println!(
    "Converged in {} iterations with residual {:.2e}",
    stats.iterations,
    stats.final_residual
);
```

### Explicit Setup and Reuse

Reuse factorization and workspace across multiple solves by calling `setup()` once:

```rust
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Cg)?
   .set_pc_type(PcType::Jacobi, None)?
   .set_operators(a.clone(), None);
ksp.setup()?; // perform factorization and allocate workspace

for rhs in rhs_set.iter() {
    let mut x = vec![0.0; n];
    ksp.solve(rhs, &mut x)?;
}
```

### Advanced Features: Composite Preconditioning

```rust
use kryst::context::ksp_context::KspContext;
use kryst::config::options::{KspOptions, PcOptions};

let mut ksp_opts = KspOptions::default();
ksp_opts.ksp_type = Some("cg".into());
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,chebyshev".into());
pc_opts.chebyshev_degree = Some(5);

let mut ksp = KspContext::new();
ksp.set_from_options(&ksp_opts, &pc_opts)?
   .set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
```

### Enhanced AMG with Smoothing

```rust
use kryst::context::ksp_context::{KspContext, SolverType};
use kryst::context::pc_context::PcType;
use kryst::config::options::PcOptions;

let mut pc_opts = PcOptions::default();
pc_opts.amg_levels = Some(4);
pc_opts.amg_strength_threshold = Some(0.25);
pc_opts.amg_nu_pre = Some(2);  // Pre-smoothing steps
pc_opts.amg_nu_post = Some(1); // Post-smoothing steps

let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
   .set_pc_type(PcType::Amg, Some(&pc_opts))?
   .set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
```

### Iteration Monitoring and Analysis

```rust
use kryst::{IterationMonitor, ParameterTuner};
use std::time::Duration;

// Monitor convergence behavior
let mut monitor = IterationMonitor::new();
// In practice, integrate monitor with solver iteration callbacks

// Automated parameter tuning
let mut tuner = ParameterTuner::new();
tuner.set_solver_types(vec![SolverType::Cg, SolverType::Gmres]);
tuner.set_pc_types(vec![PcType::Jacobi, PcType::Chebyshev, PcType::Amg]);
tuner.set_tolerances(vec![1e-6, 1e-8]);
tuner.set_max_config_time(Duration::from_secs(30));

let (best_config, all_results) = tuner.tune_parameters(&matrix, &rhs, 5).unwrap();
println!("Best configuration: {:?}", best_config);
```

### Command-line Interface (PETSc-style)

```rust
use kryst::config::options::{parse_all_options, KspOptions, PcOptions};
use kryst::context::ksp_context::KspContext;

// Parse command-line options
let args: Vec<String> = std::env::args().collect();
let (ksp_opts, pc_opts) = parse_all_options(&args)?;

// Configure from options
let mut ksp = KspContext::new();
ksp.set_from_all_options(&ksp_opts, &pc_opts)?
   .set_operators(a.clone(), None);
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;
```

Run your program with PETSc-style options:
```bash
# Basic solver configuration
./my_program -ksp_type gmres -ksp_rtol 1e-8 -pc_type jacobi

# Direct solvers
./my_program -ksp_type preonly -pc_type lu     # Direct LU solver  
./my_program -ksp_type preonly -pc_type qr     # Direct QR solver

# Advanced preconditioning
./my_program -ksp_type cg -pc_type amg -amg_nu_pre 2 -amg_nu_post 1
./my_program -ksp_type gmres -pc_chain "jacobi,chebyshev" -chebyshev_degree 5

# Show all available options
./my_program -help
```

## Supported Command-line Options

### KSP (Krylov Solver) Options
- `-ksp_type <solver>` - Solver type: `cg`, `pcg`, `gmres`, `fgmres`, `bicgstab`, `cgs`, `qmr`, `tfqmr`, `minres`, `cgnr`, `preonly`
- `-ksp_rtol <float>` - Relative convergence tolerance (default: 1e-5)
- `-ksp_atol <float>` - Absolute convergence tolerance (default: 1e-50)
- `-ksp_dtol <float>` - Divergence tolerance (default: 1e5)
- `-ksp_max_it <int>` - Maximum number of iterations (default: 10000)
- `-ksp_gmres_restart <int>` - GMRES restart parameter (default: 50)
- `-ksp_pc_side <side>` - Preconditioning side: `left`, `right`, `symmetric`
- `-ksp_reproducible` - Enable deterministic reductions; forces rank-ordered MPI sums and stable intra-rank chunking.

### PC (Preconditioner) Options

#### Basic Preconditioner Options
- `-pc_type <pc>` - Preconditioner type: `jacobi`, `blockjacobi`, `sor`, `none`

#### Incomplete Factorization Options
- `-pc_type <pc>` - ILU variants: `ilu0`, `ilu`, `ilut`, `ilutp`, `ilup`
- `-pc_ilu_levels <int>` - ILU fill levels (default: 0)
- `-pc_ilut_drop_tol <float>` - ILUT drop tolerance (default: 1e-3)
- `-pc_ilut_max_fill <int>` - ILUT maximum fill per row (default: 10)

#### Enhanced Preconditioner Options
- `-pc_type chebyshev` - Enhanced Chebyshev with eigenvalue estimation
- `-chebyshev_degree <int>` - Polynomial degree (default: 3)
- `-pc_type amg` - Algebraic multigrid with smoothing control
- `-amg_levels <int>` - Number of AMG levels (default: 4)
- `-amg_strength_threshold <float>` - Strong connection threshold (default: 0.25)
- `-amg_nu_pre <int>` - Pre-smoothing steps (default: 1)
- `-amg_nu_post <int>` - Post-smoothing steps (default: 1)

#### AMG CLI knobs
- `-pc_amg` - shorthand alias for `-pc_type amg`.
- `-pc_amg_coarsen <rs|hmis|pmis|falgout>` - Coarsening strategy (maps to `AMGConfig::coarsen_type`).
- `-pc_amg_interp <classical|direct|multipass|extended|standard>` - Interpolation/extended-smoothing variant.
- `-pc_amg_smoother <jacobi|gs|gsr|sgs|hgs|l1jacobi|chebyshev>` - Smoother applied on each level.
- `-pc_amg_smoother_steps <int>` and `-pc_amg_smoother_omega <float>` control smoothing sweeps/relaxation weight.
- `-pc_amg_truncation_factor <float>` / `-pc_amg_interp_maxnnz <int>` trim interpolation fill.
- `-pc_amg_rap_truncation_factor <float>` / `-pc_amg_rap_truncation_abs <float>` / `-pc_amg_rap_maxnnz <int>` prune RAP entries.
- `-pc_amg_keep_transpose <bool>` / `-pc_amg_keep_pivot_in_rap <bool>` control symmetry-preserving entries.
- `-pc_amg_require_spd <bool>` / `-pc_amg_print_setup <bool>` control SPD enforcement and setup printing.

Example AMG invocation:
```bash
./solve \
  -pc_amg \
  -pc_amg_levels 6 \
  -pc_amg_strength_threshold 0.25 \
  -pc_amg_coarsen hmis \
  -pc_amg_interp extended \
  -pc_amg_smoother chebyshev \
  -pc_amg_smoother_steps 2 \
  -pc_amg_smoother_omega 0.8 \
  -pc_amg_truncation_factor 0.2 \
  -pc_amg_interp_maxnnz 8 \
  -pc_amg_rap_truncation_factor 0.05 \
  -pc_amg_rap_truncation_abs 0.0 \
  -pc_amg_rap_maxnnz 16 \
  -pc_amg_keep_transpose true \
  -pc_amg_keep_pivot_in_rap true \
  -pc_amg_require_spd true \
  -pc_amg_print_setup true
```

#### Composite Preconditioning Options
- `-pc_chain <string>` - Sequential preconditioner chain (e.g., "jacobi,chebyshev")
- `-pc_type asm` - Additive Schwarz Method
- `-pc_type approxinv` - Approximate inverse preconditioner

#### ILU preconditioners
`-pc_type ilu` selects Kryst's HYPRE-inspired incomplete LU family (`Ilu`). `-pc_type ilut`/`-pc_type
ilutp` run the lighter-weight row-filter ILUT or pivoting ILUTP preconditioners, while
`-pc_type blockjacobi` with `-pc_local <ilu|ilut|ilutp>` wraps a local ILU variant inside MPI
block-Jacobi. Setting `-pc_type ilu` with `-pc_ilu_type ilut` runs the canonical ILU threshold
factorization; `Ilu::create_specialized` may route that variant to `crate::preconditioner::ilut::Ilut`
for simplicity/efficiency.

| CLI flag | Config field | Notes |
| --- | --- | --- |
| `-pc_ilu_type <ilu0|milu0|iluk|ilut>` | `IluConfig::ilu_type` | `ilu0` is default; `iluk` uses `-pc_ilu_level_of_fill`, `ilut` uses drop/fill knobs. |
| `-pc_ilu_level_of_fill <int>` | `IluConfig::level_of_fill` | Controls level-of-fill for `ILUK` (typical 0–5). |
| `-pc_ilu_max_fill_per_row <int>` | `IluConfig::max_fill_per_row` | Per-row fill cap for `ILUK`/`ILUT`; 10–50 keeps memory bounded. |
| `-pc_ilu_offdiag_drop_tolerance <float>` | `IluConfig::offdiag_drop_tolerance` | Drop entries outside LU blocks. |
| `-pc_ilu_schur_drop_tolerance <float>` | `IluConfig::schur_drop_tolerance` | For future Schur complements (currently dormant). |
| `-pc_ilu_triangular_solve <exact|jacobi|gauss_seidel>` | `IluConfig::triangular_solve` | Iterative solves trade accuracy for parallelism. |
| `-pc_ilu_lower_jacobi_iters <int>` / `-pc_ilu_upper_jacobi_iters <int>` | Jacobi iteration counts | Only used when the triangular solve is iterative. |
| `-pc_ilu_tolerance <float>` / `-pc_ilu_max_iterations <int>` | Iterative solve controls | Defaults 1e-6 & 1; iterative delivers residual-based refinement. |
| `-pc_ilu_parallel_factorization` / `-pc_ilu_parallel_trisolve` / `-pc_ilu_parallel_chunk_size <int>` | `IluConfig::enable_parallel_*`, `parallel_chunk_size` | Enable experimental rayon paths; chunk size typically 16–256. |
| `-pc_ilut_drop_tol <float>` | `IluConfig::drop_tolerance` (row-filter ILUT) | Simple heuristic ILUT drop threshold (1e-3–1e-6). |
| `-pc_ilut_max_fill <int>` | `IluConfig::max_fill_per_row` (row-filter ILUT) | Limits kept entries per row (10–100). |
| `-pc_ilut_perm_tol <float>` | Pivot tolerance for row-filter ILUT | Not used by canonical `Ilu` but available for the lightweight ILUT preconditioner. |
| `-pc_ilutp_max_fill <int>` / `-pc_ilutp_drop_tol <float>` / `-pc_ilutp_perm_tol <float>` | `Ilutp` parameters | Controls density, drop tolerance, and pivoting aggressiveness for ILUTP. |

Environment variables mirror the flags: `KRYST_PC_ILU_TYPE`, `KRYST_PC_ILU_LEVEL_OF_FILL`, `KRYST_PC_ILU_MAX_FILL_PER_ROW`, `KRYST_PC_ILU_OFFDIAG_DROP_TOL`, `KRYST_PC_ILU_SCHUR_DROP_TOL`, `KRYST_PC_ILU_TRI_SOLVE`, `KRYST_PC_ILU_LOWER_JACOBI_ITERS`, `KRYST_PC_ILU_UPPER_JACOBI_ITERS`, `KRYST_PC_ILU_PARALLEL_FACTORIZATION`, `KRYST_PC_ILU_PARALLEL_TRISOLVE`, `KRYST_PC_ILU_PARALLEL_CHUNK_SIZE`, plus `KRYST_PC_ILUT_DROP_TOL`, `KRYST_PC_ILUT_MAX_FILL`, `KRYST_PC_ILUT_PERM_TOL`, `KRYST_PC_ILUTP_MAX_FILL`, `KRYST_PC_ILUTP_DROP_TOL`, and `KRYST_PC_ILUTP_PERM_TOL`. Command-line flags override environment variables, which in turn override the built-in defaults.

##### Examples

```bash
-pc_type ilu -pc_ilu_type ilu0 -pc_ilu_triangular_solve exact
-pc_type ilu -pc_ilu_type ilut -pc_ilut_drop_tol 1e-5 -pc_ilut_max_fill 50
-pc_type ilutp -pc_ilutp_max_fill 20 -pc_ilutp_drop_tol 1e-4 -pc_ilutp_perm_tol 0.1
-pc_type blockjacobi -pc_local ilu -pc_ilu_type ilu0 -pc_ilu_level_of_fill 1
```

The first line compares Jacobi vs ILU(0) on `examples/poisson_spd_ilu0_vs_jacobi.rs`; the second
shows ILUT tuning. The third line mirrors the convection–diffusion ILUTP demo
(`examples/convection_diffusion_ilutp.rs`), and the last line is the MPI block-Jacobi + ILU(0)
toy from `examples/mpi_poisson_block_jacobi_ilu.rs`.

#### Direct Solver Options
- `-pc_type lu` - Direct LU factorization via SuperLU
- `-pc_type qr` - Direct QR factorization

#### Domain Decomposition Options  
- `-asm_overlap <int>` - ASM subdomain overlap (default: 1)
- `-asm_type <type>` - ASM variant: `restrict`, `interpolate`, `basic`

### Usage Examples
```bash
# Enhanced Chebyshev preconditioning
-ksp_type cg -pc_type chebyshev -chebyshev_degree 6

# AMG with custom smoothing
-ksp_type gmres -pc_type amg -amg_nu_pre 2 -amg_nu_post 1

# Composite preconditioning (PC-chaining)  
-ksp_type cg -pc_chain "jacobi,chebyshev" -chebyshev_degree 4

# High-accuracy direct solve
-ksp_type preonly -pc_type lu

# BiCGStab with threshold ILU
-ksp_type bicgstab -pc_type ilut -pc_ilut_drop_tol 1e-4

# GMRES with additive Schwarz
-ksp_type gmres -pc_type asm -asm_overlap 2
```

## Monitoring and Automation

### Iteration Monitoring

Track solver convergence with real-time monitoring:

```rust
use kryst::utils::monitor::IterationMonitor;
use kryst::context::ksp_context::{KspContext, SolverType};
use kryst::context::pc_context::PcType;
use std::sync::{Arc, Mutex};
use std::time::Duration;

// Create and configure monitor
let mut monitor = IterationMonitor::new();
monitor.enable_csv_logging("convergence_history.csv").unwrap();

// Configure solver with monitoring callback
let monitor_ref = Arc::new(Mutex::new(monitor));
let monitor_clone = Arc::clone(&monitor_ref);

let mut ksp = KspContext::new();
ksp.set_type(SolverType::Gmres)?
   .set_pc_type(PcType::Jacobi, None)?
   .set_operators(a.clone(), None);

// Add monitoring callback
ksp.add_monitor(move |iter, residual| {
    if let Ok(mut mon) = monitor_clone.lock() {
        mon.record_iteration(iter, residual, None);
    }
});

// Solve with monitoring
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut solution)?;

// Analyze convergence
if let Ok(mon) = monitor_ref.lock() {
    let convergence_stats = mon.get_statistics();
    println!("Total iterations: {}", convergence_stats.total_iterations);
    println!("Average convergence rate: {:.4}", convergence_stats.avg_convergence_rate);
    println!("Final residual: {:.2e}", convergence_stats.final_residual);
    
    // Check for convergence issues
    if mon.recent_convergence_rate(5).unwrap_or(1.0) > 0.9 {
        println!("Warning: Slow convergence detected");
    }
}
```

### Automated Parameter Tuning

Optimize solver/preconditioner combinations automatically:

```rust
use kryst::utils::tuning::{ParameterTuner, ParameterConfig};
use kryst::context::ksp_context::SolverType;
use kryst::context::pc_context::PcType;
use std::time::Duration;

let mut tuner = ParameterTuner::new();

// Configure search space
tuner.set_solver_types(vec![SolverType::Cg, SolverType::Gmres, SolverType::BiCgStab])
     .set_pc_types(vec![PcType::Jacobi, PcType::Chebyshev, PcType::Amg])
     .set_tolerances(vec![1e-6, 1e-8, 1e-10])
     .set_max_config_time(Duration::from_secs(60));

// Add PC-chain configurations for composite preconditioning
tuner.add_pc_chains(vec![
    "jacobi,chebyshev".to_string(),
    "jacobi,ilu0".to_string(),
]);

// Run automated tuning
let (best_config, all_results) = tuner.tune_parameters(&matrix, &rhs, 10).unwrap();

println!("Best configuration found:");
println!("  Solver: {:?}", best_config.solver_type);
println!("  Preconditioner: {:?}", best_config.pc_type);
println!("  Tolerance: {:.2e}", best_config.rtol);
if let Some(chain) = &best_config.pc_chain {
    println!("  PC Chain: {}", chain);
}
println!("  Converged: {}", all_results.iter().find(|r| r.config.solver_type == best_config.solver_type).unwrap().converged);

// Export results for further analysis
tuner.export_results("tuning_results.txt").unwrap();
let summary = tuner.get_summary();
println!("Success rate: {:.1}%", summary.get("convergence_rate").unwrap_or(&0.0) * 100.0);
```

### Advanced Monitoring Features

```rust
use kryst::utils::monitor::IterationMonitor;
use std::time::Duration;

let mut monitor = IterationMonitor::new();
monitor.start_solve();

// Record some iterations
monitor.record_iteration(0, 1.0, None);
monitor.record_iteration(1, 0.5, Some(Duration::from_millis(10)));
monitor.record_iteration(2, 0.25, Some(Duration::from_millis(12)));

// Mark convergence
monitor.mark_converged("Relative tolerance achieved");

// Get detailed statistics
let stats = monitor.get_statistics();
println!("Convergence statistics:");
println!("  Total iterations: {}", stats.total_iterations);
println!("  Average convergence rate: {:.4}", stats.avg_convergence_rate);
println!("  Best convergence rate: {:.4}", stats.best_convergence_rate);
println!("  Average iteration time: {:.3}ms", stats.avg_iteration_time.as_secs_f64() * 1000.0);

// Check recent convergence behavior
if let Some(recent_rate) = monitor.recent_convergence_rate(3) {
    println!("Recent convergence rate (last 3 iterations): {:.4}", recent_rate);
}

// Set up real-time monitoring callbacks
let mut ksp = KspContext::new();
ksp.add_monitor(|iter, residual| {
    println!("Iteration {}: residual = {:.3e}", iter, residual);
    
    // Custom monitoring logic
    if iter > 0 && iter % 10 == 0 {
        println!("  Checkpoint: {} iterations completed", iter);
    }
});
```

### Profiling and Performance Analysis

Enable detailed timing and performance information:

```toml
[dependencies]
kryst = { version = "1.0", features = ["logging"] }
```

Run with environment variables for detailed profiling:

```bash
# Trace-level logging shows detailed stage timing
RUST_LOG=trace cargo run --features=logging

# Debug-level shows major operations  
RUST_LOG=debug cargo run --features=logging

# Info-level shows high-level progress
RUST_LOG=info cargo run --features=logging
```

Profiling output includes:
- **KSPSetup**: Preconditioner setup and workspace allocation timing
- **KSPSolve**: Complete solve time breakdown
- **PCSetup**: Individual preconditioner setup timing  
- **WorkspaceAllocation**: Memory allocation timing
- **MatVec**: Matrix-vector product timing
- **PCApply**: Preconditioner application timing

## Solver Algorithms

### Krylov Methods
- **CG**: Conjugate Gradient for symmetric positive definite systems
- **PCG**: Preconditioned Conjugate Gradient
- **GMRES**: Generalized Minimal Residual with restart
- **FGMRES**: Flexible GMRES for variable preconditioning
- **BiCGStab**: BiConjugate Gradient Stabilized for nonsymmetric systems
- **CGS**: Conjugate Gradient Squared
- **QMR**: Quasi-Minimal Residual method
- **TFQMR**: Transpose-Free QMR
- **MINRES**: Minimal Residual for symmetric indefinite systems
- **CGNR**: Conjugate Gradient on the Normal Equations

### Direct Methods
- **PREONLY**: Single-step direct solve using LU or QR factorization
- Supports both `-pc_type lu` and `-pc_type qr`
- Ideal for well-conditioned systems where direct methods are preferred

## Preconditioner Details

### Basic Preconditioners
- **Jacobi**: Diagonal scaling `M⁻¹ = diag(A)⁻¹`
- **Block Jacobi**: Block-wise diagonal preconditioning with configurable block sizes
- **SOR/SSOR**: Successive Over-Relaxation with configurable relaxation parameter
- **None**: Identity preconditioning (no preconditioning)

### Incomplete Factorizations
- **ILU(0)**: Zero fill-in incomplete LU factorization
- **ILU(k)**: Incomplete LU with k levels of fill-in
- **ILUT**: ILU with threshold-based dropping strategy
- **ILUTP**: ILUT with partial pivoting for numerical stability
- **ILUP**: Incomplete LU with partial pivoting

### Advanced Preconditioners

#### Enhanced Chebyshev

Enhanced polynomial preconditioning implementation based on eigenvalue estimation:

```rust
use kryst::preconditioner::chebyshev::Chebyshev;
use kryst::config::options::PcOptions;
use kryst::context::pc_context::PcType;

// Enhanced Chebyshev with automatic eigenvalue estimation
let mut pc_opts = PcOptions::default();
pc_opts.chebyshev_degree = Some(6);  // Higher degree for better approximation
ksp.set_pc_type(PcType::Chebyshev, Some(&pc_opts))?;
```

Features:
- **Matrix-aware**: Automatic eigenvalue bound estimation using power iteration
- **Configurable Degree**: Polynomial degree optimization (default: 3, range: 1-20)
- **Storage Efficient**: Reuses matrix storage for eigenvalue computation
- **Robust**: Handles near-singular matrices with adaptive bounds

#### Enhanced AMG

Advanced Algebraic Multigrid with configurable smoothing:

```rust
use kryst::preconditioner::amg::Amg;
use kryst::config::options::PcOptions;
use kryst::context::pc_context::PcType;

// Enhanced AMG with smoothing control
let mut pc_opts = PcOptions::default();
pc_opts.amg_levels = Some(5);              // Multigrid levels
pc_opts.amg_strength_threshold = Some(0.5); // Strong connection threshold
pc_opts.amg_nu_pre = Some(2);              // Pre-smoothing steps
pc_opts.amg_nu_post = Some(1);             // Post-smoothing steps
ksp.set_pc_type(PcType::Amg, Some(&pc_opts))?;
```

Features:
- **Smoothed Multigrid**: Configurable pre- and post-smoothing parameters
- **Adaptive Coarsening**: Automatic grid hierarchy construction based on strength
- **Strength Threshold**: Customizable strong connection criteria (default: 0.25)
- **Flexible Smoothing**: Separate control of pre/post smoothing iterations

#### Composite Preconditioning

PC-chaining allows sequential application of multiple preconditioners:

```rust
use kryst::config::options::{KspOptions, PcOptions};

// Example 1: Jacobi + Chebyshev combination
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,chebyshev".to_string());
pc_opts.chebyshev_degree = Some(4);
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;

// Example 2: Multi-stage preconditioning
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("jacobi,ilu0,chebyshev".to_string());
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;

// Example 3: Domain decomposition + multigrid
let mut pc_opts = PcOptions::default();
pc_opts.pc_chain = Some("asm,amg".to_string());
pc_opts.amg_nu_pre = Some(1);
ksp.set_from_options(&KspOptions::default(), &pc_opts)?;
```

Features:
- **Flexible Combinations**: Mix any preconditioner types in sequence
- **Automatic Setup**: Transparent handling of composite preconditioner construction
- **Parameter Inheritance**: Specialized parameters apply to respective stages
- **Performance Tuning**: Optimize combinations via `ParameterTuner`

### Domain Decomposition
- **ASM**: Additive Schwarz Method with configurable overlap
- **Approximate Inverse**: SPAI-type sparse approximate inverse

## Performance Features

### Parallelization
- **Shared Memory**: Rayon-based parallel execution for matrix operations and preconditioner application
- **Distributed Memory**: MPI support for distributed linear algebra operations (via mpi feature)
- **SIMD Optimization**: Leverages hardware acceleration through optimized inner kernels via faer
- **Parallel Preconditioners**: Thread-safe preconditioner application with work stealing

### Memory Management
- **In-place Operations**: Minimizes memory allocations during iteration
- **Workspace Reuse**: Preallocated workspace vectors for Krylov methods
- **Block Operations**: Efficient cache usage through blocked algorithms
- **Sparse Patterns**: Memory-efficient storage for sparse matrices and preconditioners

### Algorithm Optimizations
- **Eigenvalue Estimation**: Fast power iteration for Chebyshev eigenvalue bounds
- **Adaptive Restart**: GMRES restart optimization based on convergence behavior
- **Early Termination**: Configurable stopping criteria with multiple tolerance options
- **Matrix Preprocessing**: Reordering and scaling for improved conditioning

## Matrix Support

### Dense Matrices
- Full support via `faer::Mat<T>` integration
- Optimized BLAS-level operations
- Support for f32, f64 precision
- Efficient dense matrix-vector products

### Sparse Matrices  
- Custom CSR format implementation
- Efficient sparse matrix-vector products
- Pattern-based optimization for preconditioners
- Memory-efficient storage with configurable sparsity patterns

### Matrix-Free Methods
- Trait-based `MatVec` interface for custom matrix implementations
- Support for implicit matrix representations
- Easy integration of matrix-free operators
- Efficient for PDE discretizations and other structured problems

## Examples and Demonstrations

The library includes comprehensive demonstration programs:

### Basic Usage Examples
```bash
# Options and CLI interface demonstration
cargo run --example options_demo -- -ksp_type gmres -pc_type jacobi -ksp_rtol 1e-8

# Direct solver usage
cargo run --example dense_direct

# Matrix market file demonstration
cargo run --example matrix_market_demo
```

### Advanced Feature Examples  
```bash
# Convergence behavior analysis
cargo run --example convergence_demo

# Iteration monitoring demonstration  
cargo run --example monitor -- --features=logging

# HYPRE-style ILU demonstration
cargo run --example hypre_ilu_demo

# MPI parallel examples (requires MPI)
mpirun -n 4 cargo run --example mpi_parallel_demo --features mpi
```

**Note**: Matrix Market example files (*.mtx) are excluded from the published crate to stay within size limits. The `matrix_market_demo` example will auto-generate test data if example files are not found.

### Command-line Examples
```bash
# Enhanced Chebyshev preconditioning
cargo run --example options_demo -- -ksp_type cg -pc_type chebyshev -chebyshev_degree 6

# AMG with custom smoothing parameters
cargo run --example options_demo -- -ksp_type gmres -pc_type amg -amg_nu_pre 3 -amg_nu_post 2

# Composite preconditioning with PC-chaining
cargo run --example options_demo -- -ksp_type cg -pc_chain "jacobi,chebyshev" -chebyshev_degree 4

# High-precision direct solve
cargo run --example options_demo -- -ksp_type preonly -pc_type lu

# Complex preconditioner combinations
cargo run --example options_demo -- -ksp_type fgmres -pc_type ilut -pc_ilut_drop_tol 1e-5
```

## Benchmarks and Performance

Performance benchmarks are available via:

```bash
cargo bench
```

Benchmark categories include:
- **Solver Comparison**: GMRES vs BiCGStab vs CG performance on various problems
- **Preconditioner Effectiveness**: Impact of different preconditioners on convergence
- **Direct vs Iterative**: Performance comparison for different problem sizes
- **Parallel Scaling**: Shared-memory (Rayon) and distributed-memory (MPI) performance
- **Phase III Features**: PC-chaining and enhanced preconditioning performance
- **Memory Usage**: Workspace allocation and memory efficiency analysis

Sample benchmark results (varies by system and problem):
```
solver_comparison/gmres    time: 45.2 ms  (convergence: 23 iterations)
solver_comparison/bicgstab time: 38.7 ms  (convergence: 31 iterations)  
solver_comparison/cg       time: 22.1 ms  (convergence: 18 iterations)
pc_effectiveness/jacobi    time: 156 ms   (convergence: 89 iterations)
pc_effectiveness/amg       time: 67.3 ms  (convergence: 12 iterations)
pc_chaining/jacobi+cheby   time: 43.8 ms  (convergence: 15 iterations)
```

## Custom Extensions

### Custom Solvers
```rust
use kryst::{LinearSolver, MatVec, Preconditioner, SolveStats, KError};

struct MyCustomSolver {
    tolerance: f64,
    max_iterations: usize,
}

impl<M, V> LinearSolver<M, V> for MyCustomSolver 
where 
    M: MatVec<V>,
    V: Clone,
{
    fn solve(
        &mut self, 
        matrix: &M, 
        preconditioner: Option<&dyn Preconditioner<M, V>>, 
        rhs: &V, 
        solution: &mut V
    ) -> Result<SolveStats, KError> {
        // Custom solver implementation
        // Return solve statistics
        Ok(SolveStats {
            iterations: 0,
            residual_norm: 0.0,
            converged: true,
        })
    }
}
```

### Custom Preconditioners
```rust
use kryst::{Preconditioner, PcSide, KError};

struct MyCustomPreconditioner {
    // Preconditioner data structures
    factorization: Option<Vec<f64>>,
}

impl<M, V> Preconditioner<M, V> for MyCustomPreconditioner {
    fn setup(&mut self, matrix: &M) -> Result<(), KError> {
        // Preconditioner setup/factorization phase
        // Store factorization data
        Ok(())
    }
    
    fn apply(&self, side: PcSide, x: &V, y: &mut V) -> Result<(), KError> {
        // Apply M⁻¹x → y (or x M⁻¹ → y for right preconditioning)
        match side {
            PcSide::Left => {
                // Left preconditioning: solve Mz = x, return z in y
            },
            PcSide::Right => {
                // Right preconditioning: solve zM = x, return z in y  
            },
        }
        Ok(())
    }
}
```

### Matrix-Free Operators
```rust
use kryst::core::traits::MatVec;
use kryst::error::KError;

struct LaplacianOperator {
    n: usize,  // Grid size
    h: f64,    // Grid spacing
}

impl MatVec<Vec<f64>> for LaplacianOperator {
    fn matvec(&self, x: &Vec<f64>, y: &mut Vec<f64>) -> Result<(), KError> {
        // Implement matrix-vector product y = Ax
        // For 1D Laplacian: -u''(x) ≈ -(u[i+1] - 2u[i] + u[i-1])/h²
        
        for i in 0..self.n {
            if i == 0 || i == self.n - 1 {
                y[i] = x[i];  // Boundary conditions
            } else {
                y[i] = (-x[i-1] + 2.0*x[i] - x[i+1]) / (self.h * self.h);
            }
        }
        Ok(())
    }
    
    fn size(&self) -> (usize, usize) {
        (self.n, self.n)
    }
}

// Usage with KspContext
use std::sync::Arc;
let laplacian = Arc::new(LaplacianOperator { n: 1000, h: 0.001 });
let mut ksp = KspContext::new();
ksp.set_type(SolverType::Cg)?
   .set_pc_type(PcType::Jacobi, None)?
   .set_operators(laplacian.clone(), None);

// Can use matrix-free operator directly
let rhs = vec![1.0; laplacian.n];
let mut sol = vec![0.0; laplacian.n];
ksp.setup()?;
let stats = ksp.solve(&rhs, &mut sol)?;
```

## Documentation and Resources

- **[API Documentation](https://docs.rs/kryst)** - Complete API reference with examples
- **[Repository](https://github.com/tmathis720/kryst)** - Source code, issues, and discussions
- **[Examples Directory](https://github.com/tmathis720/kryst/tree/main/examples)** - Comprehensive demonstration programs
- **[Benchmarks](https://github.com/tmathis720/kryst/tree/main/benches)** - Performance comparison suite
- **[Phase III/IV Summary](PHASE_III_IV_SUMMARY.md)** - Advanced preconditioning and automation features

### Mathematical References
- Saad, Y. (2003). *Iterative Methods for Sparse Linear Systems*, 2nd Edition. SIAM.
- Barrett, R. et al. (1994). *Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods*. SIAM.
- Trefethen, L.N. & Bau, D. (1997). *Numerical Linear Algebra*. SIAM.
- Briggs, W.L., Henson, V.E. & McCormick, S.F. (2000). *A Multigrid Tutorial*, 2nd Edition. SIAM.

### Software References
- PETSc Documentation: [https://petsc.org/release/documentation/](https://petsc.org/release/documentation/)
- Trilinos Documentation: [https://trilinos.github.io/](https://trilinos.github.io/)

## Testing and Validation

Run the comprehensive test suite:

```bash
# All tests
cargo test

# Specific test categories
cargo test --lib solver
cargo test --lib preconditioner
cargo test --lib context
cargo test --lib utils

# Integration tests
cargo test test_phase_iii_iv_integration
cargo test test_options_integration
cargo test test_preconditioner_integration

# With specific features
cargo test --features "rayon"
cargo test --features "mpi" 
cargo test --features "logging"

# Performance testing
cargo test --release
```

### MPI/Rayon targeted matrix tests

The matrix feature matrix and MPI/Rayon test plan live in
`docs/matrix_features.md`. Use them to validate communicator reductions,
distributed SpMV/halo exchange, and Rayon-local kernels for
`backend-faer + mpi + rayon` builds.

### Minimal MPI CI recipe

Use the following steps as a minimal MPI validation recipe (local or CI):

```bash
mpirun -n 2 cargo test --features "mpi backend-faer"
mpirun -n 2 cargo test --features "mpi rayon backend-faer"
```

### Test Coverage
- **Unit Tests**: 200+ individual component tests across solvers, preconditioners, and utilities
- **Integration Tests**: End-to-end validation including monitor integration and parameter tuning
- **Options Tests**: CLI parsing and configuration validation
- **Feature Tests**: Advanced functionality validation (PC-chaining, monitoring, tuning)
- **Performance Tests**: Benchmark validation and regression testing

## Migration Guide

### From Version 0.x to 1.0

**New Features:**
- Enhanced Chebyshev preconditioner with eigenvalue estimation
- AMG with configurable pre/post smoothing parameters
- PC-chaining for composite preconditioning
- Iteration monitoring and automated parameter tuning
- Expanded CLI options (50+ parameters)

**Breaking Changes:**
- None! Version 1.0 maintains full backward compatibility

**Recommended Upgrades:**
```rust
// Old approach
ksp.set_pc_type(PcType::Chebyshev, None)?;

// Enhanced approach (optional)
let mut pc_opts = PcOptions::default();
pc_opts.chebyshev_degree = Some(6);
ksp.set_pc_type(PcType::Chebyshev, Some(&pc_opts))?;
```

**New Monitoring Capabilities:**
```rust
// Add iteration monitoring
use kryst::utils::monitor::IterationMonitor;
let mut monitor = IterationMonitor::new();
ksp.add_monitor(|iter, residual| {
    println!("Iteration {}: {:.2e}", iter, residual);
});

// Add automated parameter tuning
use kryst::utils::tuning::ParameterTuner;
let mut tuner = ParameterTuner::new();
let (best_config, _) = tuner.tune_parameters(&matrix, &rhs, 5).unwrap();
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

### Development Setup

1. Clone the repository:
   ```bash
   git clone https://github.com/tmathis720/kryst.git
   cd kryst
   ```

2. Install Rust (stable toolchain recommended):
   ```bash
   curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
   ```

3. Optional: Install MPI for distributed features:
   ```bash
   # Ubuntu/Debian
   sudo apt-get install libopenmpi-dev
   
   # macOS  
   brew install open-mpi
   ```

4. Run tests and benchmarks:
   ```bash
   cargo test
   cargo bench
   cargo test --features "mpi"  # If MPI is available
   ```

### Developer scripts
- `scripts/ci_checks.sh` – runs `cargo fmt --all -- --check`, `cargo clippy --all-targets --all-features`, and `cargo test --all-features`.
- `scripts/ub_paranoia.sh` – executes ASan-enabled tests on the nightly toolchain for the buffer pool and dot engines.
- `scripts/miri_reduction.sh` – runs the same focused suite under `cargo miri` (nightly) to catch UB in the unsafe utilities.

### Areas for Contribution

#### High Priority
- **GPU Acceleration**: CUDA/OpenCL backends for matrix operations
- **Additional Solvers**: LOBPCG, IDR(s), BiCGStab(l) variants
- **Matrix Formats**: Coordinate (COO), block sparse (BSR) formats
- **Performance**: SIMD optimizations, better cache utilization

#### Medium Priority  
- **Multigrid Variants**: Classical AMG, smoothed aggregation
- **Eigenvalue Solvers**: Integration with Krylov eigenvalue methods
- **Nonlinear Solvers**: Newton-Krylov, JFNK methods
- **Adaptive Methods**: Adaptive restart, dynamic tolerance adjustment

#### Lower Priority
- **Complex Arithmetic**: Complex-valued linear systems support
- **Mixed Precision**: fp16/fp32/fp64 combinations for accuracy/performance tradeoffs
- **Advanced I/O**: HDF5, NetCDF matrix I/O support
- **Visualization**: Integration with plotting libraries for convergence analysis

### Code Style and Standards

- Follow Rust standard formatting: `cargo fmt`
- Ensure clippy compliance: `cargo clippy`
- Add comprehensive tests for new features
- Include benchmark tests for performance-critical code
- Document public APIs with examples
- Follow semantic versioning for releases

### Pull Request Process

1. Fork the repository
2. Create a feature branch: `git checkout -b feature/amazing-feature`
3. Make your changes and add tests
4. Ensure all tests pass: `cargo test`
5. Run formatting and linting: `cargo fmt && cargo clippy`
6. Commit your changes: `git commit -m 'Add amazing feature'`
7. Push to the branch: `git push origin feature/amazing-feature`
8. Open a Pull Request with a clear description

---

**kryst** provides a comprehensive, high-performance linear algebra toolkit for the Rust ecosystem, with particular focus on iterative methods for large-scale scientific computing applications. The library combines the mathematical rigor of established numerical libraries like PETSc with the safety and performance characteristics of Rust, making it ideal for research, scientific computing, and production applications requiring robust linear system solvers.