kotoba-workflow 0.1.22

Serverless Workflow specification compliant workflow engine
Documentation

Kotoba Workflow Engine (Itonami)

Temporal-inspired workflow engine built on top of Kotoba's graph rewriting system.

Overview

Itonami provides a powerful workflow execution engine that combines:

  • Temporal Patterns: Sequence, Parallel, Decision, Wait, Saga, Activity, Sub-workflow
  • Graph-based Execution: Declarative workflow definition using graph transformations
  • MVCC Persistence: Workflow state management with Merkle DAG
  • Activity System: Extensible activity execution framework
  • Event Sourcing: Complete audit trail of workflow execution

Architecture

┌─────────────────────────────────────────────────────────────┐
│                    Workflow Engine Layer                    │
│  ┌─────────────────────────────────────────────────────────┐ │
│  │  Workflow Definition (.kotoba)                          │ │
│  │  - WorkflowIR: Temporalパターンの宣言的定義             │ │
│  │  - StrategyIR: 拡張(Parallel, Wait, Compensation)     │ │
│  └─────────────────────────────────────────────────────────┘ │
│  ┌─────────────────────────────────────────────────────────┐ │
│  │  Execution Engine                                       │ │
│  │  - WorkflowExecutor: ワークフロー実行器                 │ │
│  │  - ActivityExecutor: Activity実行器                     │ │
│  │  - StateManager: MVCCベース状態管理                     │ │
│  └─────────────────────────────────────────────────────────┘ │
│  ┌─────────────────────────────────────────────────────────┐ │
│  │  Persistence Layer                                      │ │
│  │  - WorkflowStore: ワークフロー永続化                    │ │
│  │  - EventStore: イベント/メッセージ永続化                │ │
│  └─────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
    │
    ▼ (extends)
┌─────────────────────────────────────────────────────────────┐
│                  Kotoba Core Engine                         │
│  - Graph Store (MVCC + Merkle)                             │
│  - Rule Engine (DPO)                                       │
│  - Query Engine (GQL)                                      │
│  - Distributed Execution                                   │
└─────────────────────────────────────────────────────────────┘

Features

Workflow Patterns

  • Sequence: Execute activities in order
  • Parallel: Execute activities concurrently
  • Decision: Conditional branching based on data
  • Wait: Wait for events, timers, or signals
  • Saga: Long-running transactions with compensation
  • Activity: Execute external tasks (HTTP, DB, functions)
  • Sub-workflow: Call other workflows

Persistence

  • MVCC-based State: Immutable workflow state with versioning
  • Merkle DAG: Content-addressable state snapshots
  • Event Sourcing: Complete audit trail of execution history
  • Snapshots: Performance optimization for long-running workflows

Activity System

  • Extensible: Easy to add new activity types
  • Timeout Support: Configurable timeouts per activity
  • Retry Policies: Exponential backoff and custom retry logic
  • Built-in Activities: HTTP, Database, Function calls

Phase 2 Features

MVCC-based State Management

Workflow executions now use Multi-Version Concurrency Control (MVCC) for:

  • Versioned State: Each state change creates a new version with TxId
  • Point-in-Time Queries: Query workflow state at any transaction point
  • Concurrent Access: Multiple readers can access different versions simultaneously
  • Conflict Resolution: Optimistic concurrency control for state updates
// Get workflow state at specific transaction
let execution_at_tx = engine.get_execution_at_tx(&execution_id, tx_id).await;

// Get complete version history
let history = engine.get_execution_history(&execution_id).await;

Event Sourcing

Complete audit trail with event sourcing:

  • Immutable Events: All state changes recorded as events
  • Event Replay: Rebuild workflow state from event history
  • Event Types: Started, ActivityScheduled, Completed, Failed, etc.
  • Performance Optimization: Automatic snapshot creation
// Get full event history
let events = engine.get_event_history(&execution_id).await?;

// Rebuild execution from events (for recovery)
let execution = engine.rebuild_execution_from_events(&execution_id).await?;

Distributed Execution

Cluster-wide workflow distribution:

  • Load Balancing: Round-robin and least-loaded strategies
  • Node Management: Automatic node discovery and health monitoring
  • Failover: Automatic task reassignment on node failure
  • Cluster Health: Real-time monitoring of cluster status
// Enable distributed execution
engine.enable_distributed_execution(
    "node-1".to_string(),
    Arc::new(LeastLoadedBalancer::new())
);

// Submit workflow for distributed execution
let task_id = engine.submit_distributed_workflow(execution_id).await?;

// Check cluster health
let health = engine.get_cluster_health().await?;

Snapshot Optimization

Performance optimization for long-running workflows:

  • Automatic Snapshots: Periodic state snapshots to reduce replay time
  • Configurable Intervals: Customize snapshot frequency
  • Fast Recovery: Restore from snapshots + recent events
  • Storage Efficiency: Automatic cleanup of old snapshots

Phase 3 Features

Advanced Saga Pattern Implementation

Enterprise-grade Saga pattern support with comprehensive compensation logic:

  • Saga State Management: Complete lifecycle tracking of Saga transactions
  • Compensation Orchestration: Automatic rollback with custom compensation strategies
  • Dependency Resolution: Intelligent handling of Activity dependencies
  • Saga Monitoring: Real-time tracking of Saga progress and failures
  • Timeout Handling: Configurable timeouts for Saga transactions
// Create advanced Saga pattern
let saga_pattern = AdvancedSagaPattern {
    name: "order_processing".to_string(),
    main_flow: WorkflowStrategyOp::Seq { strategies: vec![...] },
    compensations: HashMap::from([
        ("process_payment".to_string(), compensation_strategy),
        ("reserve_inventory".to_string(), compensation_strategy),
    ]),
    config: SagaConfig {
        timeout: Some(Duration::from_secs(300)),
        compensation_policy: CompensationPolicy::ReverseOrder,
        parallelism: 3,
        ..Default::default()
    },
    dependencies: HashMap::new(),
};

// Execute advanced Saga
let result = saga_engine.execute_advanced_saga(&saga_pattern, execution_id, inputs).await?;

Comprehensive Monitoring & Observability

Production-ready monitoring with metrics, tracing, and logging:

  • Metrics Collection: Counter, Gauge, Histogram, and Summary metrics
  • Distributed Tracing: End-to-end request tracing with spans and events
  • Structured Logging: Contextual logging with execution and activity tracking
  • Health Checks: System health monitoring with component status
  • Performance Analytics: Workflow and Activity performance statistics
// Configure monitoring
let monitoring_config = MonitoringConfig {
    enable_metrics: true,
    enable_tracing: true,
    enable_logging: true,
    metrics_interval: Duration::from_secs(60),
    exporters: vec![MonitoringExporter::Prometheus {
        endpoint: "http://localhost:9090".to_string()
    }],
};

// Track workflow execution
monitor.track_workflow_event(&execution_id, ExecutionEventType::WorkflowStarted, metadata).await?;

// Get performance stats
let stats = monitor.get_workflow_stats("order_processing")?;
println!("Avg execution time: {:?}", stats.avg_execution_time);

Intelligent Workflow Optimization

Advanced optimization engine with multiple strategies:

  • Cost-Based Optimization: Minimize execution costs based on resource pricing
  • Performance Optimization: Maximize throughput and minimize latency
  • Parallel Execution Planning: Automatic detection and optimization of parallelizable tasks
  • Resource-Aware Scheduling: Consider resource constraints in optimization
  • Historical Learning: Use execution history to improve future optimizations
// Create optimization engine
let optimizer = WorkflowOptimizer::new(cost_model, resource_manager);

// Add optimization rules
optimizer.add_rule(Box::new(ParallelExecutionRule::new(4)));
optimizer.add_rule(Box::new(CostBasedOptimizationRule::new(100.0)));

// Optimize workflow
let result = optimizer.optimize_workflow(&workflow, &context).await?;
println!("Optimization saved: ${:.2}", result.improvements.iter()
    .map(|imp| imp.cost_savings).sum::<f64>());

External System Integrations

Seamless integration with external systems:

  • HTTP Integration: REST API calls with retry and timeout support
  • Database Integration: SQL database operations with connection pooling
  • Message Queue Integration: Publish/consume messages with AMQP support
  • Cloud Storage Integration: AWS S3, GCP Cloud Storage, Azure Blob Storage
  • Email Integration: SMTP-based email sending
  • Webhook Integration: HTTP webhook notifications
// Setup integrations
let mut integration_manager = IntegrationManager::new();

// Add HTTP integration
integration_manager.register_integration("api_client",
    Box::new(HttpIntegration::new("https://api.example.com", Duration::from_secs(30))
        .with_bearer_token("your-token")));

// Execute integration
let result = integration_manager.execute_integration("api_client", "users/123", HashMap::new()).await?;
println!("User data: {:?}", result);

Advanced Features Summary

Feature Description Benefits
Saga Patterns Distributed transaction management with compensation Reliable complex workflows
Monitoring Metrics, tracing, logging, health checks Production observability
Optimization Cost-based, performance, parallel execution Efficient resource usage
Integrations HTTP, DB, MQ, Cloud, Email, Webhooks Seamless system connectivity
Health Checks Component status monitoring Proactive failure detection
Performance Analytics Historical performance analysis Continuous improvement

Usage

Basic Example

use kotoba_workflow::{WorkflowEngine, WorkflowIR};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create workflow engine
    let engine = WorkflowEngine::builder()
        .with_storage("memory")
        .build()
        .await?;

    // Load workflow definition
    let workflow_ir = WorkflowIR::from_jsonnet("workflow.kotoba")?;

    // Start workflow execution
    let execution_id = engine.start_workflow(&workflow_ir, inputs).await?;

    // Wait for completion
    let result = engine.wait_for_completion(execution_id).await?;

    println!("Workflow completed with result: {:?}", result);
    Ok(())
}

Workflow Definition (.kotoba)

{
  workflow: {
    id: "order_processing",
    name: "Order Processing Workflow",
    version: "1.0.0",

    inputs: [
      { name: "orderId", type: "string", required: true },
      { name: "customerId", type: "string", required: true },
      { name: "amount", type: "number", required: true },
    ],

    outputs: [
      { name: "processed", type: "boolean" },
      { name: "confirmationId", type: "string" },
    ],

    strategy: {
      op: "saga",
      main_flow: {
        op: "seq",
        strategies: [
          {
            op: "activity",
            activity_ref: "validate_order",
            input_mapping: {
              order_id: "$.inputs.orderId",
              customer_id: "$.inputs.customerId",
            },
          },
          {
            op: "parallel",
            branches: [
              {
                op: "activity",
                activity_ref: "process_payment",
                input_mapping: { amount: "$.inputs.amount" },
              },
              {
                op: "activity",
                activity_ref: "reserve_inventory",
                input_mapping: { order_id: "$.inputs.orderId" },
              },
            ],
          },
          {
            op: "activity",
            activity_ref: "send_confirmation",
          },
        ],
      },
      compensation: {
        op: "seq",
        strategies: [
          { op: "activity", activity_ref: "cancel_payment" },
          { op: "activity", activity_ref: "release_inventory" },
          { op: "activity", activity_ref: "send_failure_notification" },
        ],
      },
    },

    timeout: "PT30M",
  },
}

Activity Implementation

use kotoba_workflow::activity::prelude::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let registry = ActivityRegistry::new();

    // Register HTTP activity
    let http_activity = ActivityBuilder::new("validate_order")
        .http("https://api.example.com/validate", "POST")
        .build();
    registry.register(http_activity).await;

    // Register custom function activity
    let db_activity = DatabaseActivity::new("reserve_inventory",
        "UPDATE inventory SET reserved = true WHERE item_id = $1");
    registry.register(Arc::new(db_activity)).await;

    // Register function activity
    let send_email = FunctionActivity::new("send_confirmation", |inputs| {
        let order_id = inputs.get("order_id").unwrap().as_str().unwrap();
        // Send confirmation email logic
        let mut outputs = HashMap::new();
        outputs.insert("confirmation_id".to_string(), json!("CONF-123"));
        Ok(outputs)
    });
    registry.register(Arc::new(send_email)).await;

    Ok(())
}

Comparison with Temporal

Aspect Temporal Itonami
Execution Model Strict workflow control Graph-based declarative execution
Persistence Event sourcing + snapshots MVCC + Merkle DAG
Language Go Rust (with .kotoba DSL)
Activity Types SDK-based Extensible trait system
Deployment Dedicated server Embedded in Kotoba
Query Language SQL-like GQL integration
State Management Temporal server Kotoba graph store

Roadmap

Phase 1: Core Implementation ✅

  • WorkflowIR definition
  • StrategyIR extensions (Temporal patterns)
  • Activity system
  • Basic execution engine

Phase 2: Persistence & Distribution ✅

  • MVCC-based state management
  • Event sourcing implementation
  • Distributed execution support
  • Snapshot optimization

Phase 3: Advanced Features ✅

  • Saga pattern full implementation
  • Monitoring and observability
  • Workflow optimization
  • External system integrations

Phase 4: Ecosystem 🌟

  • Workflow designer UI
  • Pre-built activity libraries
  • Kubernetes operator
  • Cloud-native integrations

Contributing

Contributions are welcome! Please see the main Kotoba repository for contribution guidelines.

License

Licensed under MIT OR Apache-2.0