kizzasi
Autoregressive General-Purpose Signal Predictor (AGSP)
Neuro-symbolic architecture for continuous signal streams with state space models and constraint enforcement.
Overview
Kizzasi (兆し - "sign/omen") is a Rust-native system for predicting continuous signal streams using state space models. Treats all modalities (audio, sensors, video, control signals) as equivalent signal streams.
Key Features
- Unified Interface: Single API for all model architectures
- O(1) Inference: Constant-time per-step prediction for streaming
- Constraint Enforcement: Safety guardrails via TensorLogic integration
- Real-Time I/O: MQTT, audio, sensors, video streams
- Production Ready: 124 tests, zero warnings, full documentation
- Async/Streaming: Tokio-based async prediction pipelines
- Model Versioning: A/B testing, hot-swapping, canary deployments
Quick Start
use ;
// Create predictor with Mamba2 model
let predictor = builder
.model_type
.input_dim
.output_dim
.hidden_dim
.build?;
// Single-step prediction
let input = vec!;
let output = predictor.step?;
// Multi-step rollout
let predictions = predictor.predict_n?;
// With safety guardrails
use *;
let constrained = predictor
.with_guardrails
.step?;
Architecture
kizzasi/
├── kizzasi-core # SSM engine, SIMD, parallel scan
├── kizzasi-model # Mamba, RWKV, S4, Transformer
├── kizzasi-tokenizer # VQ-VAE, quantization, compression
├── kizzasi-inference # Pipeline, sampling, streaming
├── kizzasi-logic # Constraints, optimization, safety
├── kizzasi-io # MQTT, audio, sensors, video
└── kizzasi # Unified facade (this crate)
Use Cases
- Robotics Control: Real-time motor control with safety constraints
- Anomaly Detection: Learn normal patterns, detect deviations
- Audio Processing: Next-sample prediction, streaming synthesis
- Sensor Fusion: Multi-modal signal integration
- Video Prediction: Frame-to-frame prediction with temporal coherence
Presets
// Audio processing (16kHz, mel features)
let audio_predictor = audio_preset?;
// Robotics control (6-DOF arm)
let robot = robotics_preset?;
// Sensor streams (IoT)
let sensor = sensor_preset?;
// Lightweight (edge devices)
let edge = lightweight_preset?;
Performance
- Mamba2 latency: <100μs per step
- Throughput: 320K predictions/sec (distributed)
- Memory: <50MB for typical models
- Zero-copy operations where possible
Documentation
Citation
If you use Kizzasi in research, please cite:
License
Licensed under either of Apache License, Version 2.0 or MIT license at your option.
Contributing
See CONTRIBUTING.md