kizzasi-tokenizer 0.1.0

Signal quantization and tokenization for Kizzasi AGSP - VQ-VAE, μ-law, continuous embeddings
Documentation

kizzasi-tokenizer

Signal quantization and tokenization for Kizzasi AGSP.

Overview

Comprehensive tokenization toolkit for continuous signals with VQ-VAE, μ-law, and advanced quantization strategies. Designed for audio, sensors, and general signal compression.

Features

  • VQ-VAE: Vector quantization with EMA updates and residual VQ
  • μ-law Codec: 8-bit and 16-bit compression with expansion
  • Advanced Quantizers: Adaptive, dead-zone, non-uniform, Lloyd-Max
  • Specialized: Wavelet, DCT, Fourier, k-means tokenizers
  • Neural Codec: SoundStream/Encodec-style architecture
  • Domain-Specific: Speech, music, environmental audio tokenizers
  • GPU Acceleration: CUDA/Metal support for batch operations
  • SIMD Optimized: 8-way vectorization for quantization

Quick Start

use kizzasi_tokenizer::{LinearQuantizer, SignalTokenizer};

// 8-bit linear quantization
let mut quantizer = LinearQuantizer::new(8, -1.0, 1.0)?;

let signal = Array1::from_vec(vec![0.5, -0.3, 0.8]);
let codes = quantizer.encode(&signal)?;
let reconstructed = quantizer.decode(&codes)?;

// VQ-VAE with learned codebook
use kizzasi_tokenizer::VQVAETokenizer;
let vqvae = VQVAETokenizer::new(512, 32, 64)?; // codebook_size, dim, embed_dim

Compression Performance

  • μ-law: 4x-8x compression, <1ms latency
  • VQ-VAE: 10x-100x compression, learned representations
  • Neural Codec: 20x-200x compression, high quality

Documentation

License

Licensed under either of Apache License, Version 2.0 or MIT license at your option.