# Kimi-K2 Expert Analyzer
A comprehensive toolkit for analyzing Kimi-K2's mixture-of-experts architecture and creating lightweight micro-experts for Rust-WASM deployment.
[](https://crates.io/crates/kimi-expert-analyzer)
[](https://docs.rs/kimi-expert-analyzer)
[](LICENSE)
## Overview
The Kimi-K2 Expert Analyzer is designed to convert Kimi-K2's massive 1T parameter mixture-of-experts model into efficient micro-experts (1K-100K parameters each) that can run in WebAssembly environments. This enables deployment of Kimi-like intelligence in browsers, edge devices, and embedded systems.
## โจ Key Features
- **๐ Expert Analysis**: Deep analysis of neural network architectures
- **๐ฅ Knowledge Distillation**: Extract knowledge from large models to micro-experts
- **๐ Performance Profiling**: Detailed performance analysis and optimization
- **๐ฏ Architecture Optimization**: Suggest optimal architectures for WASM deployment
- **๐ Statistical Analysis**: Comprehensive statistical analysis of model behavior
- **๐ง Conversion Tools**: Tools for Kimi-K2 to Rust conversion
## ๐ ๏ธ Installation
Add this to your `Cargo.toml`:
```toml
[dependencies]
kimi-expert-analyzer = "0.1.0"
```
## ๐ Usage
### Basic Analysis
```rust
use kimi_expert_analyzer::{Analyzer, AnalysisConfig};
// Create analyzer
let analyzer = Analyzer::new();
// Analyze a neural network
let analysis = analyzer
.analyze_network(&model)
.with_metrics(&["accuracy", "latency", "memory"])
.run()?;
println!("Analysis Results: {:#?}", analysis);
```
### Knowledge Distillation
```rust
use kimi_expert_analyzer::Distillation;
// Set up distillation
let distiller = Distillation::new()
.teacher_model(&large_model)
.student_config(student_config)
.temperature(3.0)
.alpha(0.7);
// Perform distillation
let micro_expert = distiller.distill(&training_data)?;
```
### CLI Usage
```bash
# Analyze a model
kimi-analyzer analyze --model model.onnx --output analysis.json
# Distill knowledge
kimi-analyzer distill --teacher large_model.onnx --student config.json --output micro_expert.wasm
# Profile performance
kimi-analyzer profile --model model.wasm --benchmark performance_suite
```
## ๐๏ธ Architecture Analysis
### Supported Analysis Types
- **๐ฌ Architecture Analysis**: Layer analysis, parameter counting, computational complexity
- **โก Performance Analysis**: Latency, throughput, memory usage, FLOPS
- **๐ฏ Optimization Analysis**: Pruning opportunities, quantization potential
- **๐ง Knowledge Analysis**: Information flow, attention patterns, feature importance
### Distillation Strategies
```rust
use kimi_expert_analyzer::distillation::Strategy;
// Attention-based distillation
let strategy = Strategy::Attention {
layers: vec![6, 8, 10],
weight: 0.5,
};
// Feature-based distillation
let strategy = Strategy::Feature {
intermediate_layers: true,
feature_weight: 0.3,
};
// Response-based distillation
let strategy = Strategy::Response {
temperature: 4.0,
alpha: 0.8,
};
```
## ๐ Analysis Reports
### Performance Metrics
```rust
use kimi_expert_analyzer::metrics::PerformanceReport;
let report = analyzer.generate_performance_report(&model)?;
println!("Inference Time: {} ms", report.avg_inference_time);
println!("Memory Usage: {} MB", report.peak_memory);
println!("WASM Bundle Size: {} KB", report.wasm_size);
```
### Optimization Suggestions
```rust
let suggestions = analyzer.optimization_suggestions(&model)?;
for suggestion in suggestions {
println!("Optimization: {}", suggestion.description);
println!("Expected Speedup: {}x", suggestion.speedup_factor);
println!("Memory Reduction: {}%", suggestion.memory_reduction);
}
```
## ๐งช Validation
### Model Validation
```rust
use kimi_expert_analyzer::validation::Validator;
let validator = Validator::new()
.with_test_suite(&test_data)
.with_tolerance(0.01);
let validation_result = validator.validate_conversion(
&original_model,
&converted_model
)?;
assert!(validation_result.accuracy_preserved);
assert!(validation_result.performance_improved);
```
## ๐ฏ Features
- `default` - PyTorch support
- `pytorch` - PyTorch model analysis
- `candle-support` - Candle framework integration
- `numpy-support` - NumPy array support
- `plotting` - Visualization capabilities
- `full` - All features enabled
## ๐ง CLI Tool
The crate includes a powerful CLI tool:
```bash
# Installation
cargo install kimi-expert-analyzer
# Basic analysis
kimi-analyzer analyze --input model.pt --format pytorch
# Distillation workflow
kimi-analyzer workflow distill \
--teacher large_model.pt \
--config micro_expert_config.json \
--output optimized_expert.wasm
# Batch processing
kimi-analyzer batch --input models/ --output analyzed/
```
## ๐ Benchmarks
```bash
# Run performance benchmarks
cargo bench
# Generate analysis reports
cargo run --bin kimi-analyzer -- benchmark --suite comprehensive
```
## ๐ฌ Research Applications
- **Model Compression**: Analyze compression techniques effectiveness
- **Architecture Search**: Find optimal micro-expert architectures
- **Transfer Learning**: Analyze knowledge transfer between models
- **Deployment Optimization**: Optimize for specific deployment targets
## ๐ Documentation
- [API Documentation](https://docs.rs/kimi-expert-analyzer)
- [CLI Guide](docs/cli.md)
- [Distillation Tutorial](docs/distillation.md)
- [Analysis Techniques](docs/analysis.md)
## ๐ค Contributing
Contributions are welcome! Please see our [Contributing Guide](CONTRIBUTING.md).
## ๐ License
Licensed under either of:
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE))
- MIT License ([LICENSE-MIT](LICENSE-MIT))
at your option.
## ๐ Related Projects
- [Kimi-FANN-Core](https://crates.io/crates/kimi-fann-core)
- [Synaptic Neural Mesh](https://github.com/ruvnet/Synaptic-Neural-Mesh)
- [Kimi-K2 Integration](https://github.com/ruvnet/Synaptic-Neural-Mesh/tree/main/plans/Kimi-K2)
---
**Empowering efficient neural network conversion for the WASM ecosystem**