kgst 1.0.0

A library containing the implementation of a K-Truncated Generalized Suffix Tree using Ukkonen's Algorithm.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
pub mod tree;

use crate::data::tree_item::Character;
use crate::suffix_tree::tree::*;
use crate::suffix_node::node::*;
use crate::suffix_node::*;
use crate::data::TreeItem;
use crate::data::tree_item::TreeItem as OtherTreeItem;
use crate::iter::node_iter::*;
use crate::iter::edge_iter::*;

#[cfg(feature = "non_crypto_hash")]
use fxhash::{FxHashMap as HashMap, FxHashSet as HashSet};
#[cfg(not(feature = "non_crypto_hash"))]
use std::collections::{HashMap, HashSet};

use std::collections::LinkedList;
use std::fmt::{Display, Debug};
use std::hash::Hash;
use std::cmp;
use std::option::Option;
use itertools::Itertools;
use serde::ser::{Serialize, Serializer, SerializeStruct};
    

/// A Generalized Truncated Suffix Tree implemented with a variation of Ukkonen's Algorithm.  

#[derive(Debug)]
pub struct KGST<T, U>
where
    T: Display + Debug + Eq + PartialEq + Hash + Clone + PartialOrd,
    U: Display + Debug + Eq + PartialEq + Hash + Clone,
{
    root: usize,
    nodes: HashMap<NodeID, Node<T>>,
    terminal_character: T,
    strings: HashMap<StringID, (TreeItem<T, U>, usize)>,
    leaves: Vec<NodeID>,
    suffix_links: HashMap<NodeID, NodeID>,
    node_data: HashMap<NodeID, HashMap<StringID, HashSet<usize>>>
}

impl<T, U> Serialize for KGST<T, U> 
where
    T: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize + PartialOrd,
    U: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut state = serializer.serialize_struct("KGST", 7)?;
        state.serialize_field("root", &self.root)?;
        state.serialize_field("nodes", &self.nodes)?;
        state.serialize_field("terminal_character", &self.terminal_character)?;
        state.serialize_field("strings", &self.strings)?;
        state.serialize_field("leaves", &self.leaves)?;
        state.serialize_field("suffix_links", &self.suffix_links)?;
        state.serialize_field("node_data", &self.node_data)?;
        state.end()
    }
}


impl<T, U> KGST<T, U> 
where
    T: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize + PartialOrd,
    U: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize,
{
    /// Creates a new empty K-Truncated Generalized Suffix tree, with a constant end symbol. 
    /// 
    /// # Examples
    /// 
    /// ```
    /// use generalized_suffix_tree::suffix_tree::KGST;
    /// 
    /// let tree: KGST<char, String> = KGST::new('$');
    /// ```
    pub fn new(terminal_character: T)->Self{
        Self {
            nodes: [(0, Node::new(
                [].into_iter().collect(),
                None,
                None,
                0,
                0
            ))].into_iter().collect(),
            root: 0,
            terminal_character,
            strings: [].into_iter().collect(),
            leaves: Vec::new(),
            suffix_links: [(0,0)].into_iter().collect(),
            node_data: [(0, [].into_iter().collect())].into_iter().collect(),
        }
    }

    /// Empties the tree of all strings and nodes.
    pub fn clear(&mut self){
        self.root = 0;
        self.nodes = [].into_iter().collect();
        self.strings = [].into_iter().collect();
        self.leaves = Vec::new();
        self.node_data = [].into_iter().collect();
        self.suffix_links = [].into_iter().collect();
    }

    fn leaves_of_node(&self, node_id:&NodeID, leaves:&mut Vec<NodeID>){
        if !self.get_node(node_id).has_children(){
            leaves.push(*node_id);
        }

        for child_node_id in self.get_node_children(node_id).values(){
            self.leaves_of_node(child_node_id, leaves);
        }   
    }

    pub fn num_nodes(&self)->usize{
        self.nodes.len()
    }

    /// Returns a Hashmap of all the strings present in the tree along with their respective tree depth.
    pub fn get_strings(&self)->&HashMap<StringID, (TreeItem<T, U>, usize)>{
        &self.strings
    }

    pub fn get_nodes(&self)->&HashMap<NodeID, Node<T>>{
        &self.nodes
    }

    /// Retrieves a node from the tree by node id
    pub fn get_node(&self, node_id: &NodeID)->&Node<T>{
        self.nodes.get(node_id).expect("Node ID does not exist!")
    }

    /// Returns the string represented by the incoming edge of the node.
    pub fn get_node_label(&self, node_id: &NodeID)->&[Character<T>]{
        &self.get_node_string(node_id)[*self.get_node_start(node_id)..self.get_node_start(node_id)+(self.get_node_edge_length(node_id))]
    }

    fn create_node(&mut self, children: HashMap<Character<T>, usize>,
            string_id: Option<usize>,
            data: HashMap<StringID, HashSet<usize>>,
            parent: Option<usize>,
            edge_length: usize,
            start: usize) -> usize{
                let node_id: usize = self.nodes.len();
                let node: Node<T> = Node::new(
                    children,
                    string_id,
                    parent,
                    edge_length,
                    start
                );
                self.suffix_links.insert(node_id, 0);
                self.nodes.insert(node_id, node);
                self.node_data.insert(node_id, data);
                node_id
            }

    fn set_node_suffix_link(&mut self, node_id: &NodeID, suffix_link_node_id: &NodeID){
        self.suffix_links.entry(*node_id).and_modify(|e| *e *= suffix_link_node_id).or_insert(*suffix_link_node_id);
    }

    fn get_string_by_treeitem_id(&self, treeitem_id: &StringID)->&[Character<T>]{
        self.strings.get(treeitem_id).expect("TreeItem ID does not exist!").0.get_string()
    }

    fn get_node_edge_length(&self, node_id: &NodeID)->usize{
        self.get_node(node_id).get_edge_length()
    }

    fn get_node_string(&self, node_id: &NodeID)->&[Character<T>]{
        self.get_string_by_treeitem_id(self.get_node_string_id(node_id))
    }

    fn get_node_string_id(&self, node_id: &NodeID)->&usize{
        self.get_node(node_id).get_string_id().expect("Node ID is root node")
    }

    fn get_node_mut(&mut self, node_id: &NodeID)->&mut Node<T>{
        self.nodes.get_mut(node_id).expect("Node ID does not exist!")
    }

    fn add_seq_to_leaves(&mut self, node_id: &NodeID, string_id: &StringID, start: &usize){
        let mut leaves:Vec<NodeID> = vec![];
        self.leaves_of_node(node_id, &mut leaves);
        for leaf in leaves.iter(){
            self.add_seq_to_node(leaf, string_id, start);
        }
    }

    fn get_treeitem_by_treeitem_id(&self, treeitem_id: &StringID)->&(TreeItem<T, U>, usize){
        self.strings.get(treeitem_id).expect("TreeItem ID does not exist!")
    }

    fn get_pattern_node(&self, q_string:&[T])->Option<&NodeID>{
        let mut node_id: Option<&NodeID> = Some(&self.root);
        // dbg!(q_string);
        let mut c: &T = &q_string[0];
        let mut i = 0;
        loop {
            node_id = self.get_node_child(node_id.unwrap(), c);
            match node_id{
                None => return None,
                Some(n) => {
                    if q_string.len()>self.get_node_depth(n){
                        i += self.get_node_edge_length(n);
                        c = &q_string[i];
                        node_id = Some(n);
                    }
                    else{
                        return Some(n);
                    }
                },
            }
        }
    }

    /// Retrieves all strings that the input slice is a suffix of.
    pub fn suffix_match(&self, s:&[T])-> HashMap<U, HashSet<usize>>{
        let mut query_string: Vec<T> = s.to_vec();
        query_string.push(self.terminal_character.clone());
        self.substring_match(&query_string)
    }

    /// Retrieves all strings that contain the input slice as some substring.
    pub fn substring_match(&self, s:&[T]) -> HashMap<U, HashSet<usize>>{
        let node = self.get_pattern_node(s);
        let mut leaves:Vec<usize> = vec![];
        let mut ids_and_indexes: HashMap<StringID, HashSet<usize>> = [].into_iter().collect();
        match node{
            None => {},
            Some(i) => {
                if self.get_node_depth(i)<s.len(){
                    match self.get_node_parent(i){
                        None => {},
                        Some(_parent_id) => {self.leaves_of_node(i, &mut leaves);}
                    }
                }
                else{
                    self.leaves_of_node(i, &mut leaves);
                }
            }
        }
        for leaf in leaves{
            for (treeitem_id, idx) in self.get_node_data(&leaf){
                match ids_and_indexes.get_mut(treeitem_id){
                    None => {
                        if self.get_treeitem_by_treeitem_id(treeitem_id).1>=s.len(){
                            ids_and_indexes.insert(*treeitem_id, idx.clone());
                        }
                    },
                    Some(idxs) => {
                        if self.get_treeitem_by_treeitem_id(treeitem_id).1>=s.len(){
                            for i in idx.iter(){
                                idxs.insert(*i);
                            }
                        }
                    },
                }
            }
        }
        ids_and_indexes.into_iter().map(|(k, v)| (self.strings.get(&k).cloned().unwrap().0.get_id().clone(), v)).collect::<HashMap<U, HashSet<usize>>>()
    }

    fn get_node_children(&self, node_id: &NodeID)-> &HashMap<Character<T>, usize>{
        self.get_node(node_id).get_children()
    }

    fn set_node_child_id(&mut self, edge_label: &Character<T>, parent_node_id: &NodeID, child_node_id: &NodeID){
        self.get_node_mut(parent_node_id).set_child(edge_label.clone(), *child_node_id)
    }

    fn get_mut_treeitem_by_treeitem_id(&mut self, treeitem_id: &StringID)-> &mut TreeItem<T, U>{
        &mut self.strings.get_mut(treeitem_id).expect("TreeItem does not exist!").0
    }

    fn add_node_to_treeitem(&mut self, treeitem_id: &StringID, node_id: &NodeID){
        self.get_mut_treeitem_by_treeitem_id(treeitem_id).add_data_to_node(node_id)
    }

    fn add_seq_to_node(&mut self, node_id: &NodeID , seq_id: &StringID, start: &usize){
        self.node_data.entry(*node_id).or_default().entry(*seq_id).or_default().insert(*start);
        self.add_node_to_treeitem(seq_id, node_id);
    }

    fn add_data_to_node(&mut self, node_id: &NodeID, data: HashMap<StringID, HashSet<usize>>){
        for (seq_id, starts) in data.iter(){
            for start in starts.iter(){
                self.add_seq_to_node(node_id, seq_id, start);
            }
        }
    }

    pub fn get_node_data(&self, node_id: &NodeID)->&HashMap<StringID, HashSet<usize>>{
        self.node_data.get(node_id).expect("Node ID does not exist!")
    }

    fn set_node_parent_id(&mut self, node_id: &NodeID, parent_id: &NodeID){
        self.get_node_mut(node_id).set_parent(*parent_id)
    }

    fn node_depth(&self, node_id: &NodeID, depth: usize)->usize{
        match self.get_node(node_id).get_parent(){
            None => depth,
            Some(i) => self.node_depth(i, depth+self.get_node_edge_length(node_id))
        }
    }

    fn get_node_start(&self, node_id: &NodeID)->&usize{
        self.get_node(node_id).get_start()
    }

    fn set_node_start(&mut self, node_id: &NodeID, start: usize){
        self.get_node_mut(node_id).set_start(start)
    }

    fn add_suffix_link(&mut self, node_id: &NodeID, need_suffix_link: &mut Option<usize>){
        match need_suffix_link{
            None => (),
            Some(i) => self.set_node_suffix_link(i, node_id),
        };
        *need_suffix_link = Some(*node_id)
    }

    /// inserts all suffixes of a string into the tree. If max_depth>0, all substrings of length==max_depth are inserted. 
    pub fn insert(&mut self, k: U, v: Vec<T>, max_depth: &usize){
        let seq_id: U = k.clone();
        let mut seq: Vec<T> = v.clone();

        seq.push(self.terminal_character.clone());

        let max_depth: usize = match max_depth {
            &0 => seq.len(),
            _ => cmp::min(*max_depth, seq.len()),
        };
        
        let new_string: TreeItem<T, U> = TreeItem::new(seq_id, seq.clone());
        let new_string_id: StringID = self.strings.len();
        self.strings.insert(new_string_id, (new_string, max_depth));

        let mut curr_pos: usize = 0;
        let mut start_idx: usize = 0;
        let mut need_suffix_link: Option<NodeID>;
        let mut remainder: usize = 0;
        let mut active_node: NodeID = 0;
        while curr_pos < seq.len() {
            need_suffix_link = None;
            remainder += 1;
            while remainder > 0{
                let active_edge = Character::Char(seq[start_idx+self.get_node_depth(&active_node)].clone());
                let next_node = self.get_node(&active_node).get_child(&active_edge).cloned();
                match next_node{
                    None => {
                        let new_leaf_node_id: usize = self.create_node(
                            [].into_iter().collect(),
                            Some(new_string_id),
                            [(new_string_id, [start_idx].into_iter().collect())].into_iter().collect(),
                            Some(active_node),
                            cmp::min(seq.len()-curr_pos,max_depth-self.get_node_depth(&active_node)),
                            curr_pos,
                        );
                        self.set_node_child_id(&active_edge, &active_node, &new_leaf_node_id);
                        self.add_suffix_link(&active_node, &mut need_suffix_link);
                        let active_node_data = self.get_node_data(&active_node).clone();
                        self.add_data_to_node(&new_leaf_node_id, active_node_data);
                        start_idx += 1;
                    },
                    Some(next_node_id) => {
                        if self.get_node_edge_length(&next_node_id)<=curr_pos-start_idx-self.get_node_depth(&active_node){
                            // Walk down to next node (skip count trick)
                            active_node = next_node_id;
                            continue;
                        }
                        else if self.get_node_string(&next_node_id)[self.get_node_start(&next_node_id) + curr_pos-start_idx-self.get_node_depth(&active_node)] == Character::Char(seq[curr_pos].clone()){   
                            self.add_seq_to_leaves(&next_node_id, &new_string_id, &start_idx);
                            if curr_pos==seq.len()-1{
                                start_idx+=1;
                            }
                            else{
                                self.add_suffix_link(&active_node, &mut need_suffix_link);
                                break;    
                            }
                        }
                        else{
                            let split_node_id: usize = self.create_node(
                                [
                                            (self.get_node_string(&next_node_id)[self.get_node_start(&next_node_id) + curr_pos-start_idx-self.get_node_depth(&active_node)].clone(), next_node_id)
                                            ].into_iter().collect(),
                                            Some(*self.get_node_string_id(&next_node_id)),
                                            [(new_string_id, [start_idx].into_iter().collect())].into_iter().collect(),
                                            Some(active_node),
                                            curr_pos-start_idx-self.get_node_depth(&active_node),
                                            *self.get_node_start(&next_node_id),
                            );
                            self.set_node_child_id(&active_edge, &active_node, &split_node_id);
                            let next_node_new_start = self.get_node_start(&next_node_id) + curr_pos-start_idx-self.get_node_depth(&active_node);
                            self.set_node_start(&next_node_id, next_node_new_start);
                            self.set_node_parent_id(&next_node_id, &split_node_id);
                            let leaf_node_id: usize = self.create_node(
                                [].into_iter().collect(),
                                Some(new_string_id),
                                [(new_string_id, [start_idx].into_iter().collect())].into_iter().collect(),
                                Some(split_node_id),
                                cmp::min(seq.len()-curr_pos, max_depth-self.get_node_depth(&split_node_id)),
                                curr_pos,
                            );
                            self.set_node_child_id(&Character::Char(seq[curr_pos].clone()), &split_node_id, &leaf_node_id);
                            self.add_suffix_link(&split_node_id, &mut need_suffix_link);
                            start_idx += 1;
                        }
                    },
                };
                if active_node != self.root{
                    active_node = *self.get_suffix_link(&active_node);
                }
                remainder -= 1
            }
            curr_pos +=1;
        }
        
    }

    //Checks if a string with string_id already exists in tree.
    pub fn contains(&self, string_id: &U)->bool{
        let string_ids: HashSet<&U> = self.strings.values().map(|x| x.0.get_id()).collect();
        string_ids.contains(string_id)
    }

    /// Returns a string iterator of the tree
    pub fn iter_strings(&self)-> std::collections::hash_map::Iter<'_, usize, (TreeItem<T, U>, usize)>{
        self.strings.iter()
    }

    /// Prints tree as a string.
    pub fn print_tree(&self){
        todo!()
    }

    /// Returns a preorder node iterator of the tree
    pub fn iter_nodes_pre(&self)->PreOrdNodes<T>{
        PreOrdNodes::new(&self.root, &self.nodes)
    }
    
    /// Returns a preorder node iterator of the tree
    pub fn iter_nodes_post(&self)->PostOrdNodes<T>{
        PostOrdNodes::new(&self.root, &self.nodes)
    }

    /// Returns the nodes in a path in preorder
    pub fn iter_path_pre(&self, node_id: &NodeID)->std::collections::linked_list::IntoIter<usize>{
        self.get_node_path_pre(node_id).into_iter()
    }

    /// Returns the nodes in a path in postorder
    pub fn iter_path_post(&self, node_id: &NodeID)->std::collections::linked_list::IntoIter<usize>{
        self.get_node_path_post(node_id).into_iter()
    }

    /// Returns a postorder edge iterator of the tree
    pub fn iter_edges_post(&self)->PostOrdEdges<T>{
        PostOrdEdges::new(&self.root, &self.nodes, self.suffix_links.clone(), self.nodes.iter()
        .map(|(k, v)| (*k, *v.get_parent().unwrap_or(&0)))
        .collect()
        )

    }
}

impl<T, U> SuffixTree<T> for KGST<T, U>
where
    T: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize + PartialOrd,
    U: Display + Debug + Eq + PartialEq + Hash + Clone + Serialize,
{
    fn root(&self)->&NodeID{
        &self.root
    }

    fn is_leaf(&self, node_id: &NodeID)->bool{
        self.get_node(node_id).is_leaf()
    }

    fn get_node_child(&self, node_id: &NodeID, edge_label: &T)->Option<&NodeID>{
        self.get_node(node_id).get_child(&Character::Char(edge_label.clone()))
    }
    fn get_node_parent(&self, node_id: &NodeID)->Option<&NodeID>{
        self.get_node(node_id).get_parent()
    }
    fn get_node_depth(&self, node_id: &NodeID)->usize{
        self.node_depth(node_id, 0)
    }
    fn get_suffix_link(&self, node_id: &NodeID) -> &usize{
        self.suffix_links.get(node_id).expect("Node id does not exist!")
    }
    fn get_node_label(&self, node_id: &NodeID)->Vec<T>{
        let node_edge_length  = self.get_node_edge_length(node_id);
        let node_start = *self.get_node_start(node_id);
        let string  = self.get_string_by_treeitem_id(self.get_node_string_id(node_id))[node_start..node_start+node_edge_length].iter();
        string.map(|x| x.into_inner().cloned().expect("Terminal Character cannot be unwrapped!")).collect_vec()
    }
    fn get_node_path_label(&self, _node_id: &NodeID)->&[T]{
        todo!();
    }

    fn get_node_path_pre(&self, node_id: &NodeID)->LinkedList<NodeID>{
        let mut node_path: LinkedList<NodeID> = LinkedList::new();
        let mut curr_node_id: usize = *node_id;
        while self.get_node_parent(&curr_node_id).expect("Invalid NodeID! Path is broken")!=&0{
            node_path.push_front(curr_node_id);
            curr_node_id = self.get_node_parent(&curr_node_id).cloned().expect("Invalid NodeID! Path is broken");
        }
        node_path.push_front(curr_node_id);
        node_path.push_front(0);
        node_path
    }

    fn get_node_path_post(&self, node_id: &NodeID)->LinkedList<NodeID>{
        let mut node_path: LinkedList<NodeID> = LinkedList::new();
        let mut curr_node_id: usize = *node_id;
        while self.get_node_parent(&curr_node_id).expect("Invalid NodeID! Path is broken")!=&0{
            node_path.push_front(curr_node_id);
            curr_node_id = self.get_node_parent(&curr_node_id).cloned().expect("Invalid NodeID! Path is broken");
        }
        node_path.push_back(curr_node_id);
        node_path.push_back(0);
        node_path
    }

    fn is_suffix(&self, s:&[T])->bool{
        let mut query_string: Vec<T> = s.to_vec();
        query_string.push(self.terminal_character.clone());
        self.get_pattern_node(&query_string).is_some()
    }
}