1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
use itertools::Itertools;
use kaspa_consensus_core::tx::Transaction;
use std::{
    collections::{HashMap, HashSet, VecDeque},
    iter::{FusedIterator, Map},
};

type IndexSet = HashSet<usize>;

pub trait TopologicalSort {
    fn topological_sort(self) -> Self
    where
        Self: Sized;
}

impl<T: AsRef<Transaction> + Clone> TopologicalSort for Vec<T> {
    fn topological_sort(self) -> Self {
        let mut sorted = Vec::with_capacity(self.len());
        let mut in_degree: Vec<i32> = vec![0; self.len()];

        // Index on transaction ids
        let mut index = HashMap::with_capacity(self.len());
        self.iter().enumerate().for_each(|(idx, tx)| {
            let _ = index.insert(tx.as_ref().id(), idx);
        });

        // Transaction edges
        let mut all_edges: Vec<Option<IndexSet>> = vec![None; self.len()];
        self.iter().enumerate().for_each(|(destination_idx, tx)| {
            tx.as_ref().inputs.iter().for_each(|input| {
                if let Some(origin_idx) = index.get(&input.previous_outpoint.transaction_id) {
                    all_edges[*origin_idx].get_or_insert_with(IndexSet::new).insert(destination_idx);
                }
            })
        });

        // Degrees
        (0..self.len()).for_each(|origin_idx| {
            if let Some(ref edges) = all_edges[origin_idx] {
                edges.iter().for_each(|destination_idx| {
                    in_degree[*destination_idx] += 1;
                });
            }
        });

        // Degree 0
        let mut queue = VecDeque::with_capacity(self.len());
        (0..self.len()).for_each(|destination_idx| {
            if in_degree[destination_idx] == 0 {
                queue.push_back(destination_idx);
            }
        });

        // Sorted transactions
        while !queue.is_empty() {
            let current = queue.pop_front().unwrap();
            if let Some(ref edges) = all_edges[current] {
                edges.iter().for_each(|destination_idx| {
                    let degree = in_degree.get_mut(*destination_idx).unwrap();
                    *degree -= 1;
                    if *degree == 0 {
                        queue.push_back(*destination_idx);
                    }
                });
            }
            sorted.push(self[current].clone());
        }
        assert_eq!(sorted.len(), self.len(), "by definition, cryptographically no cycle can exist in a DAG of transactions");

        sorted
    }
}

pub trait IterTopologically<T>
where
    T: AsRef<Transaction>,
{
    fn topological_iter(&self) -> TopologicalIter<'_, T>;
}

impl<T: AsRef<Transaction>> IterTopologically<T> for &[T] {
    fn topological_iter(&self) -> TopologicalIter<'_, T> {
        TopologicalIter::new(self)
    }
}

impl<T: AsRef<Transaction>> IterTopologically<T> for Vec<T> {
    fn topological_iter(&self) -> TopologicalIter<'_, T> {
        TopologicalIter::new(self)
    }
}

pub struct TopologicalIter<'a, T: AsRef<Transaction>> {
    transactions: &'a [T],
    in_degree: Vec<i32>,
    edges: Vec<Option<IndexSet>>,
    queue: VecDeque<usize>,
    yields_count: usize,
}

impl<'a, T: AsRef<Transaction>> TopologicalIter<'a, T> {
    pub fn new(transactions: &'a [T]) -> Self {
        let mut in_degree: Vec<i32> = vec![0; transactions.len()];

        // Index on transaction ids
        let mut index = HashMap::with_capacity(transactions.len());
        transactions.iter().enumerate().for_each(|(idx, tx)| {
            let _ = index.insert(tx.as_ref().id(), idx);
        });

        // Transaction edges
        let mut edges: Vec<Option<IndexSet>> = vec![None; transactions.len()];
        transactions.iter().enumerate().for_each(|(destination_idx, tx)| {
            tx.as_ref().inputs.iter().for_each(|input| {
                if let Some(origin_idx) = index.get(&input.previous_outpoint.transaction_id) {
                    edges[*origin_idx].get_or_insert_with(IndexSet::new).insert(destination_idx);
                }
            })
        });

        // Degrees
        (0..transactions.len()).for_each(|origin_idx| {
            if let Some(ref edges) = edges[origin_idx] {
                edges.iter().for_each(|destination_idx| {
                    in_degree[*destination_idx] += 1;
                });
            }
        });

        // Degree 0
        let mut queue = VecDeque::with_capacity(transactions.len());
        (0..transactions.len()).for_each(|destination_idx| {
            if in_degree[destination_idx] == 0 {
                queue.push_back(destination_idx);
            }
        });
        Self { transactions, in_degree, edges, queue, yields_count: 0 }
    }
}

impl<'a, T: AsRef<Transaction>> Iterator for TopologicalIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        match self.queue.pop_front() {
            Some(current) => {
                if let Some(ref edges) = self.edges[current] {
                    edges.iter().for_each(|destination_idx| {
                        let degree = self.in_degree.get_mut(*destination_idx).unwrap();
                        *degree -= 1;
                        if *degree == 0 {
                            self.queue.push_back(*destination_idx);
                        }
                    });
                }
                self.yields_count += 1;
                Some(&self.transactions[current])
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let items_remaining = self.transactions.len() - self.yields_count.min(self.transactions.len());
        (self.yields_count, Some(items_remaining))
    }
}

impl<'a, T: AsRef<Transaction>> FusedIterator for TopologicalIter<'a, T> {}
impl<'a, T: AsRef<Transaction>> ExactSizeIterator for TopologicalIter<'a, T> {
    fn len(&self) -> usize {
        self.transactions.len()
    }
}

pub trait IntoIterTopologically<T>
where
    T: AsRef<Transaction>,
{
    fn topological_into_iter(self) -> TopologicalIntoIter<T>;
}

impl<T: AsRef<Transaction>> IntoIterTopologically<T> for Vec<T> {
    fn topological_into_iter(self) -> TopologicalIntoIter<T> {
        TopologicalIntoIter::new(self)
    }
}

impl<T, I, F> IntoIterTopologically<T> for Map<I, F>
where
    T: AsRef<Transaction>,
    I: Iterator,
    F: FnMut(<I as Iterator>::Item) -> T,
{
    fn topological_into_iter(self) -> TopologicalIntoIter<T> {
        TopologicalIntoIter::new(self)
    }
}

pub struct TopologicalIntoIter<T: AsRef<Transaction>> {
    transactions: Vec<Option<T>>,
    in_degree: Vec<i32>,
    edges: Vec<Option<IndexSet>>,
    queue: VecDeque<usize>,
    yields_count: usize,
}

impl<T: AsRef<Transaction>> TopologicalIntoIter<T> {
    pub fn new(transactions: impl IntoIterator<Item = T>) -> Self {
        // Collect all transactions
        let transactions = transactions.into_iter().map(|tx| Some(tx)).collect_vec();

        let mut in_degree: Vec<i32> = vec![0; transactions.len()];

        // Index on transaction ids
        let mut index = HashMap::with_capacity(transactions.len());
        transactions.iter().enumerate().for_each(|(idx, tx)| {
            let _ = index.insert(tx.as_ref().unwrap().as_ref().id(), idx);
        });

        // Transaction edges
        let mut edges: Vec<Option<IndexSet>> = vec![None; transactions.len()];
        transactions.iter().enumerate().for_each(|(destination_idx, tx)| {
            tx.as_ref().unwrap().as_ref().inputs.iter().for_each(|input| {
                if let Some(origin_idx) = index.get(&input.previous_outpoint.transaction_id) {
                    edges[*origin_idx].get_or_insert_with(IndexSet::new).insert(destination_idx);
                }
            })
        });

        // Degrees
        (0..transactions.len()).for_each(|origin_idx| {
            if let Some(ref edges) = edges[origin_idx] {
                edges.iter().for_each(|destination_idx| {
                    in_degree[*destination_idx] += 1;
                });
            }
        });

        // Degree 0
        let mut queue = VecDeque::with_capacity(transactions.len());
        (0..transactions.len()).for_each(|destination_idx| {
            if in_degree[destination_idx] == 0 {
                queue.push_back(destination_idx);
            }
        });
        Self { transactions, in_degree, edges, queue, yields_count: 0 }
    }
}

impl<T: AsRef<Transaction>> Iterator for TopologicalIntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match self.queue.pop_front() {
            Some(current) => {
                if let Some(ref edges) = self.edges[current] {
                    edges.iter().for_each(|destination_idx| {
                        let degree = self.in_degree.get_mut(*destination_idx).unwrap();
                        *degree -= 1;
                        if *degree == 0 {
                            self.queue.push_back(*destination_idx);
                        }
                    });
                }
                self.yields_count += 1;
                self.transactions[current].take()
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let items_remaining = self.transactions.len() - self.yields_count.min(self.transactions.len());
        (self.yields_count, Some(items_remaining))
    }
}

impl<T: AsRef<Transaction>> FusedIterator for TopologicalIntoIter<T> {}
impl<T: AsRef<Transaction>> ExactSizeIterator for TopologicalIntoIter<T> {
    fn len(&self) -> usize {
        self.transactions.len()
    }
}