jupiter 3.0.0

Jupiter is a library for providing high-throughput ultra low latency services via the RESP protocol as defined by Redis.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
//! Contains the server component of Jupiter.
//!
//! Opens a server-socket on the specified port (**server.port** in the config or 2410 as fallback)
//! and binds it to the selected IP (**server.host** in the config or 0.0.0.0 as fallback). Each
//! incoming client is expected to send RESP requests and will be provided with the appropriate
//! responses.
//!
//! Note that in order to achieve zero downtime / ultra high availability demands, the sever will
//! periodically try to bind the socket to the selected port, therefore an "new" instance can
//! be started and the "old" once can bleed out and the port will be "handed through" with minimal
//! downtime. Also, this will listen to change events of the config and will relocate to another
//! port or host if changed.
//!
//! # Example
//!
//! ```no_run
//! use jupiter::builder::Builder;
//! use tokio::time::Duration;
//! use jupiter::config::Config;
//! use jupiter::server::Server;
//!
//! #[tokio::main]
//! async fn main() {
//!     //  Setup and create a platform...
//! let platform = Builder::new().enable_all().build().await;
//!
//!     // Specify a minimal config so that we run on a different port than a
//!     // production instance.
//!     platform.require::<Config>().load_from_string("
//!         server:
//!             port: 1503
//!     ", None);
//!
//!     // Run the platform...
//!     platform.require::<Server>().event_loop().await;
//! }
//! ```
use crate::average::Average;
use crate::spawn;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};

use bytes::{BufMut, BytesMut};
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::{TcpListener, TcpStream};

use crate::commands::CommandDictionary;
use crate::config::Config;
use crate::platform::Platform;
use crate::request::Request;
use crate::response::OutputError;
use arc_swap::ArcSwap;
use std::sync::Mutex;
use tokio::net::tcp::WriteHalf;

/// Specifies the timeout when waiting for incoming data on a client connection.
///
/// When waiting for incoming data we need to interrupt this every once in a while to check
/// if either the platform is being shut down or if the connection was killed manually.
const READ_WAIT_TIMEOUT: Duration = Duration::from_millis(500);

/// Determines the pre-allocated receive buffer size for incoming requests. Most requests will /
/// should fit into this buffer so that no additional allocations are required when handling a
/// command.
const DEFAULT_BUFFER_SIZE: usize = 8192;

/// Specifies the timeout when waiting for a new incoming connection.
///
/// When waiting for a new connection we need to interrupt this every once in a while so that
/// we can check if the platform has been shut down.
const CONNECT_WAIT_TIMEOUT: Duration = Duration::from_millis(500);

/// Represents a client connection.
pub struct Connection {
    peer_address: String,
    active: AtomicBool,
    commands: Average,
    name: ArcSwap<Option<String>>,
}

impl PartialEq for Connection {
    fn eq(&self, other: &Self) -> bool {
        self.peer_address == other.peer_address
    }
}

impl Connection {
    /// Determines if the connection is active or if a termination has been requested.
    pub fn is_active(&self) -> bool {
        self.active.load(Ordering::Acquire)
    }

    /// Terminates the connection.
    pub fn quit(&self) {
        self.active.store(false, Ordering::Release);
    }

    /// Stores the name of the connected client.
    pub fn set_name(&self, name: &str) {
        self.name.store(Arc::new(Some(name.to_owned())));
    }

    /// Retrieves the name of the connected client (if known).
    pub fn get_name(&self) -> Arc<Option<String>> {
        self.name.load().clone()
    }

    /// Provides a an average recording the runtime of commands.
    pub fn commands(&self) -> &Average {
        &self.commands
    }
}

/// Provides some metadata for a client connection.
pub struct ConnectionInfo {
    /// Contains the peer address of the client being connected.
    pub peer_address: String,

    /// Contains the name of the connected client.
    pub client: String,

    /// Contains the number of commands which have been received along
    /// with their average runtime.
    pub commands: Average,
}

/// Represents a server which manages all TCP connections.
pub struct Server {
    running: AtomicBool,
    current_address: Mutex<Option<String>>,
    platform: Arc<Platform>,
    connections: Mutex<Vec<Arc<Connection>>>,
}

impl Server {
    /// Creates and installs a **Server** into the given **Platform**.
    ///
    /// Note that this is called by the [Builder](crate::builder::Builder) unless disabled.
    ///
    /// Also note, that this will not technically start the server. This has to be done manually
    /// via [event_loop](Server::event_loop) as it is most probable done in the main thread.
    pub fn install(platform: &Arc<Platform>) -> Arc<Self> {
        let server = Arc::new(Server {
            running: AtomicBool::new(false),
            current_address: Mutex::new(None),
            platform: platform.clone(),
            connections: Mutex::new(Vec::new()),
        });

        platform.register::<Server>(server.clone());

        server
    }

    /// Lists all currently active connections.
    pub fn connections(&self) -> Vec<ConnectionInfo> {
        let mut result = Vec::new();
        for connection in self.connections.lock().unwrap().iter() {
            result.push(ConnectionInfo {
                peer_address: connection.peer_address.clone(),
                commands: connection.commands.clone(),
                client: connection
                    .name
                    .load()
                    .as_deref()
                    .map(|name| name.to_string())
                    .unwrap_or_else(|| "".to_string()),
            });
        }

        result
    }

    /// Kills the connection of the given peer address.
    pub fn kill(&self, peer_address: &str) -> bool {
        self.connections
            .lock()
            .unwrap()
            .iter()
            .find(|c| c.peer_address == peer_address)
            .map(|c| c.active.store(false, Ordering::Release))
            .is_some()
    }

    /// Adds a newly created client connection.
    ///
    /// Note that this involves locking a **Mutex**. However, we expect our clients to use
    /// connection pooling, so that only a few rather long running connections are present.
    fn add_connection(&self, connection: Arc<Connection>) {
        self.connections.lock().unwrap().push(connection);
    }

    /// Removes a connection after it has been closed by either side.
    fn remove_connection(&self, connection: Arc<Connection>) {
        let mut mut_connections = self.connections.lock().unwrap();
        if let Some(index) = mut_connections
            .iter()
            .position(|other| *other == connection)
        {
            let _ = mut_connections.remove(index);
        }
    }

    /// Determines if the server socket should keep listening for incoming connections.
    ///
    /// In contrast to **Platform::is_running** this is not used to control the shutdown of the
    /// server. Rather we toggle this flag to false if a config and therefore address change was
    /// detected. This way **server_loop** will exit and a new server socket for the appropriate
    /// address will be setup by the **event_loop**.
    fn is_running(&self) -> bool {
        self.running.load(Ordering::Acquire)
    }

    /// Determines the server address based on the current configuration.
    ///
    /// If no, an invalid or a partial config is present, fallback values are used. By default we
    /// use port 2410 and bind to "0.0.0.0".
    fn address(&self) -> String {
        self.platform
            .find::<Config>()
            .map(|config| {
                let handle = config.current();
                format!(
                    "{}:{}",
                    handle.config()["server"]["host"]
                        .as_str()
                        .unwrap_or("0.0.0.0"),
                    handle.config()["server"]["port"]
                        .as_i64()
                        .filter(|port| port > &0 && port <= &(u16::MAX as i64))
                        .unwrap_or(2410)
                )
            })
            .unwrap_or_else(|| "0.0.0.0:2410".to_owned())
    }

    /// Starts the event loop in a separate thread.
    ///
    /// This is most probably used by test scenarios where the tests itself run in the main thread.
    pub fn fork(server: &Arc<Server>) {
        let cloned_server = server.clone();
        spawn!(async move {
            cloned_server.event_loop().await;
        });
    }

    /// Starts the event loop in a separate thread and waits until the server is up and running.
    ///
    /// Just like **fork** this is intended to be used in test environments.
    pub async fn fork_and_await(server: &Arc<Server>) {
        Server::fork(server);

        while !server.is_running() {
            tokio::time::sleep(Duration::from_secs(1)).await;
        }
    }

    /// Tries to open a server socket on the specified address to serve incoming client connections.
    ///
    /// The task of this loop is to bind the server socket to the specified address. Once this was
    /// successful, we enter the [server_loop](Server::server_loop) to actually handle incoming
    /// connections. Once this loop returns, either the platform is no longer running and we should
    /// exit, or the config has changed and we should try to bind the server to the new address.
    pub async fn event_loop(&self) {
        let mut address = String::new();
        let mut last_bind_error_reported = Instant::now();

        while self.platform.is_running() {
            // If the sever is started for the first time or if it has been restarted due to a
            // config change, we need to reload the address...
            if !self.is_running() {
                address = self.address();
                self.running.store(true, Ordering::Release);
            }

            // Bind and hopefully enter the server_loop...
            if let Ok(mut listener) = TcpListener::bind(&address).await {
                log::info!("Opened server socket on {}...", &address);
                *self.current_address.lock().unwrap() = Some(address.clone());
                self.server_loop(&mut listener).await;
                log::info!("Closing server socket on {}.", &address);
            } else {
                // If we were unable to bind to the server, we log this every once in a while
                // (every 5s). Otherwise we would jam the log as re retry every 500ms.
                if Instant::now()
                    .duration_since(last_bind_error_reported)
                    .as_secs()
                    > 5
                {
                    log::error!(
                        "Cannot open server address: {}. Retrying every 500ms...",
                        &address
                    );
                    last_bind_error_reported = Instant::now();
                }
                tokio::time::sleep(Duration::from_millis(500)).await;
            }
        }
    }

    /// Runs the main server loop which processes incoming connections.
    ///
    /// This also listens on config changes and exits to the event_loop if necessary (server
    /// address changed...).   
    async fn server_loop(&self, listener: &mut TcpListener) {
        let mut config_changed_flag = self.platform.require::<Config>().notifier();

        while self.platform.is_running() && self.is_running() {
            tokio::select! {
                // We use a timeout here so that the while condition (esp. platform.is_running())
                // is checked every once in a while...
                timeout_stream = tokio::time::timeout(CONNECT_WAIT_TIMEOUT, listener.accept()) => {
                    // We're only interested in a positive result here, as an Err simply indicates
                    // that the timeout was hit - in this case we do nothing as the while condition
                    // is all the needs to be checked...
                    if let Ok(stream) = timeout_stream {
                        // If a stream is present, we treat this as new connection and eventually
                        // start a client_loop for it...
                        if let Ok((stream, _)) = stream {
                            self.handle_new_connection(stream);
                        } else {
                            // Otherwise the socket has been closed therefore we exit to the
                            // event_loop which will either complete exit or try to re-create
                            // the socket.
                            return;
                        }
                    }
                }
                _ = config_changed_flag.recv() => {
                    // If the config was changed, we need to check if the address itself changed...
                    let new_address = self.address();
                    if let Some(current_address) = &*self.current_address.lock().unwrap() {
                       if current_address != &new_address {
                           log::info!("Server address has changed. Restarting server socket...");

                           // Force the event_loop to re-evaluate the expected server address...
                           self.running.store(false, Ordering::Release);

                           // Return to event_loop so that the server socket is re-created...
                           return;
                       }
                    }
               }
            }
        }
    }

    /// Handles a new incoming connection.
    ///
    /// This will register the connection in the list of client connections and then fork a
    /// "thread" which mainly simply executes the **resp_protocol_loop** for this connection.
    fn handle_new_connection(&self, stream: TcpStream) {
        let platform = self.platform.clone();
        spawn!(async move {
            // Mark the connection as nodelay, as we already optimize all writes as far as possible.
            let _ = stream.set_nodelay(true);

            // Register the new connection to that the can report it in the maintenance utilities...
            let server = platform.require::<Server>();
            let connection = Arc::new(Connection {
                peer_address: stream
                    .peer_addr()
                    .map(|addr| addr.to_string())
                    .unwrap_or_else(|_| "<unknown>".to_owned()),
                active: AtomicBool::new(true),
                commands: Average::new(),
                name: ArcSwap::new(Arc::new(None)),
            });
            log::debug!("Opened connection from {}...", connection.peer_address);
            server.add_connection(connection.clone());

            // Executes the client loop for this connection....
            if let Err(error) = resp_protocol_loop(platform, connection.clone(), stream).await {
                log::debug!(
                    "An IO error occurred in connection {}: {}",
                    connection.peer_address,
                    error
                );
            }

            // Removes the connection as it has been closed...
            log::debug!("Closing connection to {}...", connection.peer_address);
            server.remove_connection(connection);
        });
    }
}

/// Executed per client to process incoming RESP commands.
async fn resp_protocol_loop(
    platform: Arc<Platform>,
    connection: Arc<Connection>,
    mut stream: TcpStream,
) -> anyhow::Result<()> {
    // Acquire a dispatcher to have a lock free view of all known commands...
    let mut dispatcher = platform.require::<CommandDictionary>().dispatcher();
    // Pre-allocate a buffer for incoming requests. This will only be re-allocated if a request
    // was larger than 8 KB...
    let mut input_buffer = BytesMut::with_capacity(DEFAULT_BUFFER_SIZE);
    let (mut reader, mut writer) = stream.split();

    while platform.is_running() && connection.is_active() {
        // We apply a timeout here, so that the condition of the while loop is checked every once in a while...
        match tokio::time::timeout(READ_WAIT_TIMEOUT, reader.read_buf(&mut input_buffer)).await {
            // Best case, we read some bytes from the socket..
            Ok(Ok(bytes_read)) if bytes_read > 0 => match Request::parse(&input_buffer) {
                // aaand we were able to parse a RESP Request from the given data in the buffer...
                Ok(Some(request)) => {
                    log::debug!("Received {}", request.command());

                    let watch = Instant::now();
                    let request_len = request.len();
                    match dispatcher.invoke(request, Some(&connection)).await {
                        Ok(response_data) => {
                            // We only update the monitoring infos if the command was successfully executed...
                            connection.commands.add(watch.elapsed().as_micros() as i32);
                            writer.write_all(response_data.as_ref()).await?;
                            writer.flush().await?;
                        }
                        Err(error) => {
                            handle_error(error, &mut writer).await?;

                            // Return from the loop to effectively close the connection...
                            return Ok(());
                        }
                    }

                    input_buffer = clear_input_buffer(input_buffer, request_len);
                }
                Err(error) => {
                    handle_protocol_error(error, &mut writer).await?;

                    // Return from the loop to effectively close the connection...
                    return Ok(());
                }
                // A partial RESP request is present - do nothing so that we keep on reading...
                _ => (),
            },

            // Reading from the client return a zero length result -> the client wants to close the connection.
            // We therefore return from this loop.
            Ok(Ok(0)) => return Ok(()),

            // An IO error occurred while reading - notify our called and abort...
            Ok(Err(error)) => {
                return Err(anyhow::anyhow!(
                    "An error occurred while reading from the client: {}",
                    error
                ));
            }

            // The timeout elapsed before any data was read => do nothing, all we want to do is to re-evaluate
            // our while condition anyway...
            _ => (),
        }
    }

    Ok(())
}

async fn handle_error(error: OutputError, writer: &mut WriteHalf<'_>) -> anyhow::Result<()> {
    // OutputErrors are the only kind of errors which are escalated up to this loop.
    // Everything else is handled internally by the dispatcher. The reason for this
    // behaviour is that an OutputError indicates that either an IO error or a protocol
    // error occurred - therefore we rather close this connection as it might be in an
    // inconsistent state...

    // Try to send an error message if the protocol is malformed. In case of an
    // IO error there is no point in sending yet another message, as will most
    // probably fail anyway, so we just close the connection...
    if let OutputError::ProtocolError(error) = error {
        let error_message = error.to_string().replace(['\r', '\n'], " ");
        writer
            .write_all(format!("-SERVER: {}\r\n", error_message).as_bytes())
            .await?;
        writer.flush().await?;
    }

    Ok(())
}

async fn handle_protocol_error(
    error: anyhow::Error,
    writer: &mut WriteHalf<'_>,
) -> anyhow::Result<()> {
    // We received an invalid/malformed RESP request - send an appropriate error message
    // and close the connection...
    writer
        .write_all(
            format!(
                "-CLIENT: A malformed RESP request was received: {}\r\n",
                error
            )
            .as_bytes(),
        )
        .await?;
    writer.flush().await?;
    Ok(())
}

fn clear_input_buffer(mut input_buffer: BytesMut, request_len: usize) -> BytesMut {
    // If the input buffer has grown in order to accommodate a large request, we shrink
    // it here again. Otherwise we clear the buffer to make room for the next request..
    if input_buffer.capacity() > DEFAULT_BUFFER_SIZE || input_buffer.len() > request_len {
        let previous_buffer = input_buffer;
        input_buffer = BytesMut::with_capacity(DEFAULT_BUFFER_SIZE);

        // If the previous buffer contains trailing data, we transfer it to the
        // new buffer.
        if previous_buffer.len() > request_len {
            input_buffer.put_slice(&previous_buffer[request_len..]);
        }
    } else {
        input_buffer.truncate(0);
    }

    input_buffer
}

#[cfg(test)]
mod tests {
    use crate::builder::Builder;
    use crate::config::Config;
    use crate::server::Server;
    use crate::testing::{query_redis_async, test_async};

    #[test]
    fn integration_test() {
        // We want exclusive access to both, the test-repo and the 1503 port on which we fire up
        // a test-server for our integration tests...
        log::info!("Acquiring shared resources...");
        let _guard = crate::testing::SHARED_TEST_RESOURCES.lock().unwrap();
        log::info!("Successfully acquired shared resources.");

        test_async(async {
            //  Setup and create a platform...
            let platform = Builder::new().enable_all().disable_config().build().await;
            let _ = crate::config::install(platform.clone(), false).await;

            // Specify a minimal config so that we run on a different port than a
            // production instance.
            platform
                .require::<Config>()
                .load_from_string(
                    "
                server:
                    port: 1503
            ",
                    None,
                )
                .unwrap();

            // Normally we'd directly run the event loop here:
            // platform.require::<Server>().event_loop().await;

            // However, as we want to run some examples, we fork the server in an
            // separate thread..
            Server::fork_and_await(&platform.require::<Server>()).await;

            // Fire up a redis client and invoke our PING command...
            let result = query_redis_async(|con| redis::cmd("PING").query::<String>(con))
                .await
                .unwrap();
            assert_eq!(result, "PONG");

            platform.terminate();
        });
    }
}