jpegli-rs 0.12.0

Pure Rust JPEG encoder/decoder - port of Google's jpegli with perceptual optimizations
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# jpegli-rs

> **⚠️ This crate is being renamed to [`zenjpeg`]https://crates.io/crates/zenjpeg.**
>
> After six rewrites and significant divergence from the original jpegli, we're renaming to better reflect that this is now an independent project. Please migrate to `zenjpeg` for future updates.
>
> ```toml
> # Old (deprecated)
> jpegli-rs = "0.11"
>
> # New (recommended)
> zenjpeg = "0.12"
> ```

[![Crates.io](https://img.shields.io/crates/v/jpegli-rs.svg)](https://crates.io/crates/jpegli-rs)
[![Documentation](https://docs.rs/jpegli-rs/badge.svg)](https://docs.rs/jpegli-rs)
[![CI](https://github.com/imazen/jpegli-rs/actions/workflows/ci.yml/badge.svg)](https://github.com/imazen/jpegli-rs/actions/workflows/ci.yml)
[![License: AGPL-3.0-or-later](https://img.shields.io/crates/l/jpegli-rs.svg)](LICENSE)

A pure Rust JPEG encoder and decoder with perceptual optimizations.

## Heritage and Divergence

This project started as a port of [jpegli](https://github.com/libjxl/libjxl/tree/main/lib/jpegli), Google's improved JPEG encoder from the JPEG XL project. After six rewrites it has diverged significantly and is being renamed to **zenjpeg**.

**Ideas adopted from jpegli:**
- Adaptive quantization (content-aware bit allocation)
- XYB color space with ICC profiles (note: XYB support is currently poor, ~5 SSIMULACRA2 behind C++)
- Perceptually-tuned quantization tables
- Zero-bias strategies for coefficient rounding

**Ideas adopted from mozjpeg:**
- Overshoot deringing for documents/graphics
- Trellis quantization for optimal coefficient selection
- Hybrid approach combining jpegli's AQ with mozjpeg's trellis

**Where we went our own way:**
- Pure Rust, `#![forbid(unsafe_code)]` by default (unsafe SIMD is opt-in)
- Streaming encoder API for memory efficiency (process images row-by-row)
- Portable SIMD via `wide` crate instead of platform intrinsics
- Parallel encoding support
- UltraHDR support (HDR gain maps for backward-compatible HDR JPEGs)
- Independent optimizations and bug fixes

## Features

- **Pure Rust** - No C/C++ dependencies, builds anywhere Rust does
- **Perceptual optimization** - Adaptive quantization for better visual quality at smaller sizes
- **Trellis quantization** - Optimal coefficient selection from mozjpeg
- **Overshoot deringing** - Eliminates ringing artifacts on documents and graphics (enabled by default)
- **Backward compatible** - Produces standard JPEG files readable by any decoder
- **SIMD accelerated** - Portable SIMD via `wide` crate
- **Streaming API** - Memory-efficient row-by-row encoding for large images
- **Parallel encoding** - Multi-threaded for large images (1024x1024+)
- **UltraHDR support** - Encode/decode HDR gain maps (optional `ultrahdr` feature)
- **Color management** - Optional ICC profile support

## Known Limitations

- **XYB color space** - Currently ~5 SSIMULACRA2 points behind C++ jpegli. Use YCbCr for best quality.
- **Decoder speed** - Prioritizes precision (12-bit pipeline) over speed; ~8x slower than zune-jpeg.

## API Reference

### Encoder API

All encoder types are in `jpegli::encoder`:

```rust
use jpegli::encoder::{
    EncoderConfig, PixelLayout, Quality, ChromaSubsampling, Unstoppable
};
```

#### Quick Start

```rust
use jpegli::encoder::{EncoderConfig, PixelLayout, ChromaSubsampling, Unstoppable};

// Create reusable config (quality and color mode set in constructor)
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter)
    .progressive(true);

// Encode from raw bytes
let mut enc = config.encode_from_bytes(1920, 1080, PixelLayout::Rgb8Srgb)?;
enc.push_packed(&rgb_bytes, Unstoppable)?;
let jpeg = enc.finish()?;
```

#### Three Encoder Entry Points

| Method | Input Type | Use Case |
|--------|------------|----------|
| `encode_from_bytes(w, h, layout)` | `&[u8]` | Raw byte buffers |
| `encode_from_rgb::<P>(w, h)` | `rgb` crate types | `RGB<u8>`, `RGBA<f32>`, etc. |
| `encode_from_ycbcr_planar(w, h)` | `YCbCrPlanes` | Video decoder output |

#### Examples

```rust
use jpegli::encoder::{EncoderConfig, PixelLayout, ChromaSubsampling, Unstoppable};

let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter);

// From raw RGB bytes
let mut enc = config.encode_from_bytes(800, 600, PixelLayout::Rgb8Srgb)?;
enc.push_packed(&rgb_bytes, Unstoppable)?;
let jpeg = enc.finish()?;

// From rgb crate types
use rgb::RGB;
let mut enc = config.encode_from_rgb::<RGB<u8>>(800, 600)?;
enc.push_packed(&pixels, Unstoppable)?;
let jpeg = enc.finish()?;

// From planar YCbCr (video pipelines)
let mut enc = config.encode_from_ycbcr_planar(1920, 1080)?;
enc.push(&planes, num_rows, Unstoppable)?;
let jpeg = enc.finish()?;
```

#### EncoderConfig Constructors

Choose one constructor based on desired color mode:

| Constructor | Color Mode | Use Case |
|-------------|------------|----------|
| `EncoderConfig::ycbcr(q, sub)` | YCbCr | Standard JPEG (most compatible) |
| `EncoderConfig::xyb(q, b_sub)` | XYB | Perceptual color space (better quality) |
| `EncoderConfig::grayscale(q)` | Grayscale | Single-channel output |

#### Builder Methods

| Method | Description | Default |
|--------|-------------|---------|
| `.progressive(bool)` | Progressive JPEG (~3% smaller) | `false` |
| `.optimize_huffman(bool)` | Optimal Huffman tables | `true` |
| `.deringing(bool)` | Overshoot deringing for documents/graphics | `true` |
| `.sharp_yuv(bool)` | SharpYUV downsampling | `false` |
| `.separate_chroma_tables(bool)` | Use 3 quant tables (Y, Cb, Cr) vs 2 (Y, shared) | `true` |
| `.icc_profile(bytes)` | Attach ICC profile | None |
| `.exif(exif)` | Embed EXIF metadata | None |
| `.xmp(data)` | Embed XMP metadata | None |
| `.restart_interval(n)` | MCUs between restart markers | 0 |

#### Quality Options

```rust
use jpegli::encoder::{EncoderConfig, Quality, ChromaSubsampling};

// Simple quality scale (0-100)
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter);

// Quality enum variants
let config = EncoderConfig::ycbcr(
    Quality::ApproxJpegli(85.0),  // Default scale
    ChromaSubsampling::Quarter
);
// Or: Quality::ApproxMozjpeg(80)      - Match mozjpeg output
// Or: Quality::ApproxSsim2(90.0)      - Target SSIMULACRA2 score
// Or: Quality::ApproxButteraugli(1.0) - Target butteraugli distance
```

#### Pixel Layouts

| Layout | Bytes/px | Notes |
|--------|----------|-------|
| `Rgb8Srgb` | 3 | Default, sRGB gamma |
| `Bgr8Srgb` / `Bgrx8Srgb` | 3/4 | Windows/GDI order |
| `Rgbx8Srgb` | 4 | 4th byte ignored |
| `Gray8Srgb` | 1 | Grayscale sRGB |
| `Rgb16Linear` | 6 | 16-bit linear |
| `RgbF32Linear` | 12 | HDR float (0.0-1.0) |
| `YCbCr8` / `YCbCrF32` | 3/12 | Pre-converted YCbCr |

#### Chroma Subsampling

```rust
use jpegli::encoder::{EncoderConfig, ChromaSubsampling, XybSubsampling};

// YCbCr subsampling
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter);  // 4:2:0 (best compression)
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::None);     // 4:4:4 (best quality)
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::HalfHorizontal); // 4:2:2
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::HalfVertical);   // 4:4:0

// XYB B-channel subsampling
let config = EncoderConfig::xyb(85, XybSubsampling::BQuarter); // B at 4:2:0
let config = EncoderConfig::xyb(85, XybSubsampling::Full);    // No subsampling
```

#### Resource Estimation

```rust
use jpegli::encoder::{EncoderConfig, ChromaSubsampling};

let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter);

// Typical memory estimate
let estimate = config.estimate_memory(1920, 1080);

// Guaranteed upper bound (for resource reservation)
let ceiling = config.estimate_memory_ceiling(1920, 1080);
```

---

### Decoder API

> **Prerelease:** The decoder API is behind the `decoder` feature flag and will have breaking changes.
> Enable with `jpegli-rs = { version = "...", features = ["decoder"] }`.

All decoder types are in `jpegli::decoder`:

```rust
use jpegli::decoder::{Decoder, DecodedImage, DecodedImageF32, DecoderConfig};
```

#### Basic Decoding

```rust
// Decode to RGB (default)
let image = Decoder::new().decode(&jpeg_data)?;
let pixels: &[u8] = image.pixels();
let (width, height) = image.dimensions();
```

#### High-Precision Decoding (f32)

Preserves jpegli's 12-bit internal precision:

```rust
let image: DecodedImageF32 = Decoder::new().decode_f32(&jpeg_data)?;
let pixels: &[f32] = image.pixels();  // Values in 0.0-1.0

// Convert to 8-bit or 16-bit when needed
let u8_pixels: Vec<u8> = image.to_u8();
let u16_pixels: Vec<u16> = image.to_u16();
```

#### YCbCr Output (Zero Color Conversion)

For video pipelines or re-encoding:

```rust
use jpegli::decoder::{Decoder, DecodedYCbCr};

let ycbcr: DecodedYCbCr = Decoder::new().decode_to_ycbcr_f32(&jpeg_data)?;
// Access Y, Cb, Cr planes directly (f32, range [-128, 127])
```

#### Reading JPEG Info Without Decoding

```rust
let info = Decoder::new().read_info(&jpeg_data)?;
println!("{}x{}, {} components", info.width, info.height, info.num_components);
```

#### Decoder Options

| Method | Description | Default |
|--------|-------------|---------|
| `.output_format(fmt)` | Output pixel format | `Rgb` |
| `.fancy_upsampling(bool)` | Smooth chroma upsampling | `true` |
| `.block_smoothing(bool)` | DCT block edge smoothing | `false` |
| `.apply_icc(bool)` | Apply embedded ICC profile | `true` |
| `.max_pixels(n)` | Pixel count limit (DoS protection) | 100M |
| `.max_memory(n)` | Memory limit in bytes | 512 MB |

#### Decoded Image Methods

```rust
let image = Decoder::new().decode(&jpeg_data)?;

image.width()           // Image width
image.height()          // Image height
image.dimensions()      // (width, height) tuple
image.pixels()          // &[u8] pixel data
image.bytes_per_pixel() // Bytes per pixel for format
image.stride()          // Bytes per row
```

#### DecoderConfig (Advanced)

```rust
use jpegli::decoder::{Decoder, DecoderConfig};

// Most users should use the builder methods instead:
let image = Decoder::new()
    .fancy_upsampling(true)
    .block_smoothing(false)
    .apply_icc(true)
    .max_pixels(100_000_000)
    .max_memory(512 * 1024 * 1024)
    .decode(&jpeg_data)?;

// Or construct DecoderConfig directly:
let config = DecoderConfig::default();
let decoder = Decoder::from_config(config);
```

## Performance

### Encoding Speed

| Image Size | Sequential | Progressive | Notes |
|------------|------------|-------------|-------|
| 512x512 | 118 MP/s | 58 MP/s | Small images |
| 1024x1024 | 92 MP/s | 36 MP/s | Medium images |
| 2048x2048 | 87 MP/s | 46 MP/s | Large images |

### Sequential vs Progressive

| Quality | Seq Size | Prog Size | Prog Δ | Prog Slowdown |
|---------|----------|-----------|--------|---------------|
| Q50 | 322 KB | 313 KB | **-2.8%** | 2.5x |
| Q70 | 429 KB | 416 KB | **-3.0%** | 2.0x |
| Q85 | 586 KB | 568 KB | **-3.1%** | 2.1x |
| Q95 | 915 KB | 887 KB | **-3.1%** | 2.2x |

**Progressive produces ~3% smaller files** at the same quality, but takes ~2x longer.

**Recommendation:**
- Use **Sequential** for: real-time encoding, high throughput
- Use **Progressive** for: web delivery, storage optimization

### Decoding Speed

| Decoder | Speed | Notes |
|---------|-------|-------|
| zune-jpeg | 392 MP/s | Integer IDCT, AVX2 |
| jpeg-decoder | 120 MP/s | Integer IDCT |
| **jpegli-rs** | **47 MP/s** | f32 IDCT, 12-bit precision |

The decoder prioritizes precision over speed, matching C++ jpegli's 12-bit pipeline.

## Table Optimization

The `EncodingTables` API provides fine-grained control over quantization and zero-bias
tables for researching better encoding parameters.

### Quick Start

```rust
use jpegli::encoder::{EncoderConfig, ChromaSubsampling};
use jpegli::encoder::tuning::{EncodingTables, ScalingParams, dct};

// Start from defaults and modify
let mut tables = EncodingTables::default_ycbcr();

// Scale a specific coefficient (component 0 = Y, k = coefficient index)
tables.scale_quant(0, 5, 1.2);  // 20% higher quantization at position 5

// Or use exact quantization values (no quality scaling)
tables.scaling = ScalingParams::Exact;
tables.quant.c0[0] = 16.0;  // DC quantization for Y

let config = EncoderConfig::ycbcr(85.0, ChromaSubsampling::Quarter)
    .tables(Box::new(tables));
```

### Understanding the Parameters

**Quantization Tables** (`quant`): 64 coefficients per component (Y/Cb/Cr or X/Y/B)
- Lower values = more precision = larger file
- Higher values = more compression = smaller file
- DC (index 0) affects brightness uniformity
- Low frequencies (indices 1, 8, 9, 16, 17) affect gradients
- High frequencies affect edges and texture

**Zero-Bias Tables** (`zero_bias_mul`, `zero_bias_offset_*`):
- Control rounding behavior during quantization
- `zero_bias_mul[k]` multiplies the dead zone around zero
- Higher values = more aggressive zeroing of small coefficients = smaller files
- `zero_bias_offset_dc/ac` add to the threshold before zeroing

**Scaling Params**:
- `ScalingParams::Scaled { global_scale, frequency_exponents }` - quality-dependent scaling
- `ScalingParams::Exact` - use raw values (must be valid u16 range)

### DCT Coefficient Layout

```
Position in 8x8 block (row-major index k):
 0  1  2  3  4  5  6  7
 8  9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

k=0 is DC (average brightness)
k=1,8 are lowest AC frequencies (horizontal/vertical gradients)
k=63 is highest frequency (diagonal detail)
```

Use `dct::freq_distance(k)` to get Manhattan distance from DC (0-14).
Use `dct::IMPORTANCE_ORDER` for coefficients sorted by perceptual impact.

### Research Methodology

#### 1. Corpus-Based Optimization

```rust
use jpegli::encoder::tuning::{EncodingTables, dct};

fn evaluate_tables(tables: &EncodingTables, corpus: &[Image]) -> f64 {
    let mut total_score = 0.0;
    for image in corpus {
        let jpeg = encode_with_tables(image, tables);
        let score = ssimulacra2_per_byte(&jpeg, image);  // quality/size
        total_score += score;
    }
    total_score / corpus.len() as f64
}

// Grid search over coefficient k
fn optimize_coefficient(k: usize, component: usize, corpus: &[Image]) {
    let mut best_score = f64::MIN;
    let mut best_value = 1.0;

    for scale in [0.5, 0.75, 1.0, 1.25, 1.5, 2.0] {
        let mut tables = EncodingTables::default_ycbcr();
        tables.scale_quant(component, k, scale);

        let score = evaluate_tables(&tables, corpus);
        if score > best_score {
            best_score = score;
            best_value = scale;
        }
    }
    println!("Coefficient {} best scale: {}", k, best_value);
}
```

#### 2. Gradient-Free Optimization

For automated discovery, use derivative-free optimizers:

```rust
// Using argmin crate with Nelder-Mead
use argmin::solver::neldermead::NelderMead;

fn objective(params: &[f64], corpus: &[Image]) -> f64 {
    let mut tables = EncodingTables::default_ycbcr();

    // Map params to table modifications (e.g., first 10 most impactful coefficients)
    for (i, &scale) in params.iter().enumerate() {
        let k = dct::IMPORTANCE_ORDER[i + 1]; // Skip DC
        tables.scale_quant(0, k, scale as f32); // Y component
    }

    -evaluate_tables(&tables, corpus) // Negative because we minimize
}
```

**Recommended optimizers:**
- **CMA-ES** (Covariance Matrix Adaptation): Best for 10-50 parameters
- **Nelder-Mead**: Good for quick exploration, 5-20 parameters
- **Differential Evolution**: Robust, handles constraints well
- **Bayesian Optimization**: Sample-efficient when evaluations are expensive

#### 3. Image-Adaptive Tables

Different image categories may benefit from different tables:

| Content Type | Strategy |
|--------------|----------|
| Photographs | Lower DC/low-freq quant, preserve gradients |
| Graphics/UI | Higher high-freq quant, preserve edges |
| Text on photos | Balance - preserve both |
| Skin tones | Lower Cb/Cr quant in mid frequencies |

```rust
fn classify_and_encode(image: &Image) -> Vec<u8> {
    let tables = match classify_content(image) {
        ContentType::Photo => tables_optimized_for_photos(),
        ContentType::Graphic => tables_optimized_for_graphics(),
        ContentType::Mixed => EncodingTables::default_ycbcr(),
    };
    encode_with_tables(image, &tables)
}
```

#### 4. Perceptual Weighting

Use quality metrics to weight optimization:

```rust
// SSIMULACRA2 weights certain frequencies more than others
// Butteraugli penalizes different artifacts

fn multi_metric_score(jpeg: &[u8], original: &Image) -> f64 {
    let ssim2 = ssimulacra2(jpeg, original);
    let butteraugli = butteraugli_distance(jpeg, original);
    let size = jpeg.len() as f64;

    // Combine: higher quality, lower butteraugli, smaller size
    (ssim2 * 100.0 - butteraugli * 10.0) / (size / 1000.0)
}
```

### Ideas for Research

1. **Content-aware table selection**: Train a classifier to select optimal tables
2. **Quality-dependent tables**: Different tables for Q50 vs Q90
3. **Resolution-dependent**: High-res images may need different high-freq handling
4. **Per-block adaptive**: Use AQ to modulate per-block quantization
5. **Machine learning**: Use differentiable JPEG approximations to train tables
6. **Genetic algorithms**: Evolve table populations over a corpus
7. **Transfer learning**: Start from optimized tables for similar content

### Available Helpers

```rust
use jpegli::encoder::tuning::dct;

// Coefficient analysis
dct::freq_distance(k)       // Manhattan distance from DC (0-14)
dct::row_col(k)             // (row, col) in 8x8 block
dct::to_zigzag(k)           // Row-major to zigzag order
dct::from_zigzag(z)         // Zigzag to row-major
dct::IMPORTANCE_ORDER       // Coefficients by perceptual impact

// Table manipulation
tables.scale_quant(c, k, factor)    // Scale one coefficient
tables.perturb_quant(c, k, delta)   // Add delta to coefficient
tables.blend(&other, t)              // Linear interpolation (0.0-1.0)
tables.quant.scale_component(c, f)   // Scale entire component
tables.quant.scale_all(f)            // Scale all coefficients
```

## Overshoot Deringing

**Enabled by default.** This technique was pioneered by [@kornel](https://github.com/kornelski)
in [mozjpeg](https://github.com/mozilla/mozjpeg) and significantly improves quality for
documents, screenshots, and graphics without any quality penalty for photographic content.

### The Problem

JPEG uses DCT (Discrete Cosine Transform) which represents pixel blocks as sums of cosine
waves. Hard edges—like text on a white background—create high-frequency components that
are difficult to represent accurately. The result is "ringing": oscillating artifacts that
look like halos or waves emanating from sharp transitions.

### The Insight

JPEG decoders clamp output values to 0-255. This means to display white (255), any encoded
value ≥255 works identically after clamping. The encoder can exploit this "headroom" above
the displayable range.

### The Solution

Instead of encoding a flat plateau at the maximum value, deringing creates a smooth curve
that "overshoots" above the maximum:
- The peak (above 255) gets clamped to 255 on decode
- The result looks identical to the original
- But the smooth curve compresses much better with fewer artifacts!

This is analogous to "anti-clipping" in audio processing.

### When It Helps Most

- Documents and screenshots with white backgrounds
- Text and graphics with hard edges
- Any image with saturated regions (pixels at 0 or 255)
- UI elements with sharp corners

### Usage

Deringing is **on by default**. To disable it (not recommended):

```rust
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter)
    .deringing(false);  // Disable deringing
```

## C++ Parity Status

Tested against C++ jpegli on frymire.png (1118x1105):

| Metric | Rust | C++ | Difference |
|--------|------|-----|------------|
| File size (Q85 seq) | 586.3 KB | 586.7 KB | **-0.1%** |
| File size (Q85 prog) | 568.2 KB | 565.1 KB | **+0.5%** |
| SSIM2 (Q85) | 69.0 | 69.0 | **identical** |

Quality is identical; file sizes within 0.5%.

### Comparing with C++ jpegli: 2 vs 3 Quantization Tables

When comparing output between jpegli-rs and C++ jpegli, **use `jpegli_set_distance()`
in C++**, not `jpeg_set_quality()`. Here's why:

**The issue:**
- `jpeg_set_quality()` in C++ uses **2 chroma tables** (Cb and Cr share the same table)
- `jpegli_set_distance()` in C++ uses **3 tables** (separate Y, Cb, Cr tables)
- jpegli-rs **always uses 3 tables**

Using `jpeg_set_quality()` for comparison will show ~4% file size differences and
different quantization behavior because the encoders are configured differently.

**Correct comparison (FFI):**
```c
// C++ - use distance-based quality (3 tables)
jpegli_set_distance(&cinfo, 1.0, JPEGLI_TRUE);  // distance 1.0 ≈ quality 90

// NOT: jpeg_set_quality(&cinfo, 90, TRUE);  // 2 tables - invalid comparison!
```

**Quality to distance conversion:**
```rust
fn quality_to_distance(q: f32) -> f32 {
    if q >= 100.0 { 0.01 }
    else if q >= 30.0 { 0.1 + (100.0 - q) * 0.09 }
    else { 53.0 / 3000.0 * q * q - 23.0 / 20.0 * q + 25.0 }
}
// q90 → distance 1.0, q75 → distance 2.35
```

With proper distance-based comparison, size and quality differences are typically
within ±1%.

**Matching jpeg_set_quality() behavior:**

If you need output that matches tools using `jpeg_set_quality()` (2 tables),
use the `.separate_chroma_tables(false)` option:

```rust
// Match jpeg_set_quality() behavior (2 tables: Y, shared chroma)
let config = EncoderConfig::ycbcr(85, ChromaSubsampling::Quarter)
    .separate_chroma_tables(false);
```

## Feature Flags

| Feature | Default | Description |
|---------|---------|-------------|
| `decoder` | No | Enable decoder API (prerelease, API will change) |
| `ultrahdr` | No | UltraHDR HDR gain map encoding/decoding (requires `decoder`) |
| `cms-lcms2` | Yes | Color management via lcms2 |
| `cms-moxcms` | No | Pure Rust color management |
| `unsafe_simd` | No | Raw AVX2/SSE intrinsics (~10-20% faster) |
| `test-utils` | Yes | Testing utilities |

By default, the crate uses `#![forbid(unsafe_code)]`. SIMD is provided via the safe, portable `wide` crate. Enable `unsafe_simd` for raw intrinsics on x86_64.

```toml
[dependencies]
jpegli-rs = "0.11"

# With UltraHDR support:
jpegli-rs = { version = "0.11", features = ["ultrahdr"] }

# Minimal (no CMS):
jpegli-rs = { version = "0.11", default-features = false }

# With unsafe SIMD (x86_64 only):
jpegli-rs = { version = "0.11", features = ["unsafe_simd"] }
```

## Encoder Status

| Feature | Status |
|---------|--------|
| Baseline JPEG | Working |
| Progressive JPEG | Working |
| Adaptive quantization | Working |
| Huffman optimization | Working |
| 4:4:4 / 4:2:0 / 4:2:2 / 4:4:0 | Working |
| XYB color space | Working |
| Grayscale | Working |
| Custom quant tables | Working |
| ICC profile embedding | Working |
| YCbCr planar input | Working |

## Decoder Status

> **Prerelease:** Enable with `features = ["decoder"]`. API will have breaking changes.

| Feature | Status |
|---------|--------|
| Baseline JPEG | Working |
| Progressive JPEG | Working |
| All subsampling modes | Working |
| Restart markers | Working |
| ICC profile extraction | Working |
| XYB decoding | Working (with CMS) |
| f32 output | Working |

## Future Optimization Opportunities

Profiling against C++ jpegli reveals these bottlenecks (2K image, progressive 4:2:0):

| Area | Rust | C++ | Gap | Notes |
|------|------|-----|-----|-------|
| **RGB→YCbCr** | 11.7% | 1.7% | **6.9x** | Biggest opportunity |
| **Adaptive quantization** | 28.6% | 12.1% | **2.4x** | Algorithm efficiency |
| **Huffman freq counting** | 5.7% | 0.5% | **11x** | Already SIMD, still slow |
| DCT | 7.3% | 5.5% | 1.3x | Reasonable |
| Entropy encoding | 10.9% | 35.9% || C++ slower here |

**Crates to investigate for RGB→YCbCr:**
- [`yuv`]https://lib.rs/crates/yuv (0.8.9) - Faster than libyuv, AVX-512/AVX2/SSE/NEON
- [`yuvutils-rs`]https://lib.rs/crates/yuvutils-rs - AVX2/SSE/NEON, optional AVX-512
- [`dcv-color-primitives`]https://lib.rs/crates/dcv-color-primitives - AWS, AVX2/NEON

Current gap: Rust is **~1.6-1.9x slower** than C++ jpegli (fair FFI comparison).

## Development

### Verify C++ Parity

```bash
# Quick parity test (no C++ build needed)
cargo test --release --test cpp_parity_locked

# Full comparison (requires C++ jpegli built)
cargo test --release --test comprehensive_cpp_comparison -- --nocapture --ignored
```

### Building C++ Reference (Optional)

```bash
git submodule update --init --recursive
cd internal/jpegli-cpp && mkdir -p build && cd build
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -DJPEGXL_ENABLE_TOOLS=ON ..
ninja cjpegli djpegli
```

## License

**AGPL-3.0-or-later**

A commercial license is available from https://imageresizing.net/pricing

## Acknowledgments

Originally a port of [jpegli](https://github.com/libjxl/libjxl/tree/main/lib/jpegli)
from the JPEG XL project by Google (BSD-3-Clause). After six rewrites, this is now
an independent project that shares ideas but little code with the original.

## AI Disclosure

Developed with assistance from Claude (Anthropic). Extensively tested against
C++ reference with 340+ tests. Report issues at https://github.com/imazen/jpegli-rs/issues