1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
use std::{f64::consts::PI, time::Duration};
use crate::{
numbers::eq_zero, surface::Surface, Angle, Cartesian3DVector, GeocentricPos, GeodeticPos,
LatLong, Length, Mat33, NVector, Speed, Vec3, Vehicle,
};
use super::{
base::{angle_radians_between, easting, exact_side},
GreatCircle, MinorArc,
};
/// A sphere; for most use cases, a sphere is an acceptable approximation of the figure of a cellestial body (e.g. Earth).
///
/// [Sphere] implements several usefull navigation algorithms.
#[derive(PartialEq, Clone, Copy, Debug, Default)]
pub struct Sphere {
radius: Length,
}
impl Sphere {
// 1 millisecond in hours.
const ONE_MILLI_HOURS: f64 = 1.0 / (3_600.0 * 1_000.0);
// CPA Newton-Raphson maximum number of iteration. */
const CPA_NR_MAX_ITERATIONS: u64 = 50;
/// Spherical Earth model using the [IUGG](https://iugg.org) (International Union of Geodesy and Geophysics) Earth volumic radius - generally accepted
/// as the Earth radius when assuming a spherical model.
/// Note: this is equal to the volumetric radius of the ubiquous WGS84 ellipsoid rounded to 1 decimal.
pub const EARTH: Sphere = Sphere {
radius: Length::from_metres(6_371_000.8f64),
};
/// Spherical Moon model using the [IAU/IAG](https://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf) radius.
pub const MOON: Sphere = Sphere {
radius: Length::from_metres(1_737_400.0f64),
};
/// Creates a new [Sphere] with the given radius.
pub fn new(radius: Length) -> Self {
Sphere { radius }
}
/// Returns the radius of this sphere.
#[inline]
pub fn radius(&self) -> Length {
self.radius
}
/// Computes how far the given position is along a path described by the given minor arc: if a
/// perpendicular is drawn from the position to the path, the along-track distance is the
/// signed distance from the start point to where the perpendicular crosses the path.
///
/// # Examples
///
/// ```
/// use jord::{LatLong, Length};
/// use jord::spherical::{MinorArc, Sphere};
///
/// let p = LatLong::from_degrees(53.2611, -0.7972).to_nvector();
/// let start = LatLong::from_degrees(53.3206, -1.7297).to_nvector();
/// let end = LatLong::from_degrees(53.1887, 0.1334).to_nvector();
/// let d = Sphere::EARTH.along_track_distance(p, MinorArc::new(start, end));
/// assert_eq!(Length::from_metres(62331.501), d.round_mm());
/// ```
pub fn along_track_distance(&self, p: NVector, ma: MinorArc) -> Length {
let normal = ma.normal();
let angle: f64 = angle_radians_between(
ma.start().as_vec3(),
normal.cross_prod(p.as_vec3()).cross_prod(normal),
Some(normal),
);
angle * self.radius
}
/// Computes the angle between the two given positions, which is also equal to the distance
/// between these positions on the unit sphere.
///
/// # Examples
///
/// ```
/// use jord::{Angle, LatLong};
/// use jord::spherical::Sphere;
///
/// let a = Sphere::angle(
/// LatLong::from_degrees(90.0, 0.0).to_nvector(),
/// LatLong::from_degrees(-90.0, 0.0).to_nvector()
/// );
/// assert_eq!(Angle::HALF_CIRCLE, a);
/// ```
pub fn angle(p1: NVector, p2: NVector) -> Angle {
Angle::from_radians(angle_radians_between(p1.as_vec3(), p2.as_vec3(), None))
}
/// Computes the signed distance from the given position to the given great circle.
/// Returns a negative length if the position is left of great circle, positive length if the position is right
/// of great circle; the orientation of the great circle is therefore important.
///
/// # Examples
///
/// ```
/// use jord::{Angle, LatLong, Length};
/// use jord::spherical::{GreatCircle, Sphere};
///
/// let p = LatLong::from_degrees(53.2611, -0.7972).to_nvector();
/// let gc = GreatCircle::from_heading(
/// LatLong::from_degrees(53.3206, -1.7297).to_nvector(),
/// Angle::from_degrees(96.0)
/// );
/// assert_eq!(Length::from_metres(-305.665), Sphere::EARTH.cross_track_distance(p, gc).round_mm());
/// ```
pub fn cross_track_distance(&self, p: NVector, gc: GreatCircle) -> Length {
let angle = angle_radians_between(gc.normal(), p.as_vec3(), None);
(angle - (PI / 2.0)) * self.radius
}
/// Computes the destination position from the given position having travelled the given distance on the given
/// initial bearing (compass angle) (bearing will normally vary before destination is reached).
///
/// # Examples
///
/// ```
/// use std::f64::consts::PI;
/// use jord::{Angle, Length, LatLong};
/// use jord::spherical::Sphere;
///
/// let distance = Sphere::EARTH.radius() * PI / 4.0;
/// let p = LatLong::from_degrees(90.0, 0.0).to_nvector();
/// let dest = Sphere::EARTH.destination_pos(p, Angle::from_degrees(180.0), distance);
///
/// assert_eq!(LatLong::from_degrees(45.0, 0.0), LatLong::from_nvector(dest).round_d7());
/// ```
pub fn destination_pos(&self, p0: NVector, bearing: Angle, distance: Length) -> NVector {
if distance == Length::ZERO {
p0
} else {
// east direction vector at p
let ed = easting(p0.as_vec3());
// north direction vector at p
let nd = p0.as_vec3().cross_prod(ed);
// central angle
let ta = distance.as_metres() / self.radius.as_metres();
let bearing_radians = bearing.as_radians();
// unit vector in the direction of the azimuth
let dir = nd * bearing_radians.cos() + ed * bearing_radians.sin();
NVector::new((p0.as_vec3() * ta.cos() + dir * ta.sin()).unit())
}
}
/// Computes the surface distance on the great circle between the two given positions.
///
/// # Examples
///
/// ```
/// use jord::{Length, LatLong};
/// use jord::spherical::Sphere;
///
/// let d = Sphere::EARTH.distance(
/// LatLong::from_degrees(90.0, 0.0).to_nvector(),
/// LatLong::from_degrees(-90.0, 0.0).to_nvector()
/// );
/// assert_eq!(
/// Length::from_metres(20_015_089.309),
/// d.round_mm()
/// );
/// ```
pub fn distance(&self, p1: NVector, p2: NVector) -> Length {
Self::angle(p1, p2) * self.radius
}
/// Converts the given great circle distance to the equivalent central angle in the range [0, 180] degrees.
///
/// The given distance is normalised to the range [0, `PI * Sphere::radius`].
///
/// # Examples
///
/// ```
/// use std::f64::consts::PI;
/// use jord::{Angle, Length, NVector};
/// use jord::spherical::Sphere;
///
/// let p1 = NVector::from_lat_long_degrees(54.0, 154.0);
/// let p2 = NVector::from_lat_long_degrees(55.0, 155.0);
/// let d = Sphere::EARTH.distance(p1, p2);
///
/// assert_eq!(
/// Sphere::EARTH.distance_to_angle(d),
/// Sphere::angle(p1, p2)
/// );
/// ```
pub fn distance_to_angle(&self, distance: Length) -> Angle {
let max_distance = PI * self.radius;
if distance == max_distance {
return Angle::HALF_CIRCLE;
}
let d = if distance > max_distance {
distance.as_metres() % max_distance.as_metres()
} else {
distance.as_metres()
};
Angle::from_radians(d / self.radius.as_metres())
}
/// Determines whether the 2 given positions define a unique great circle: i.e. they are
/// not equal nor the antipode of one another.
pub fn is_great_circle(p1: NVector, p2: NVector) -> bool {
p1 != p2 && !p1.is_antipode_of(p2)
}
/// Computes the final bearing arriving at `p2` from `p1` in compass angle.
/// Compass angles are clockwise angles from true north: 0 = north, 90 = east, 180 = south, 270 = west.
/// The final bearing will differ from the initial bearing by varying degrees according to distance and latitude.
/// Returns 0 if both positions are equal or the antipode of each other - [is_great_cirle](crate::spherical::Sphere::is_great_circle).
///
/// # Examples
///
/// ```
/// use jord::{Angle, LatLong};
/// use jord::spherical::Sphere;
///
/// assert_eq!(
/// Angle::from_degrees(90.0),
/// Sphere::final_bearing(LatLong::from_degrees(0.0, 0.0).to_nvector(), LatLong::from_degrees(0.0, 1.0).to_nvector())
/// );
/// ```
pub fn final_bearing(p1: NVector, p2: NVector) -> Angle {
if !Self::is_great_circle(p1, p2) {
Angle::ZERO
} else {
Angle::from_radians(final_bearing_radians(p1, p2)).normalised()
}
}
/// Computes the initial bearing from `p1` to `p2` in compass angle.
/// Compass angles are clockwise angles from true north: 0 = north, 90 = east, 180 = south, 270 = west.
/// Returns 0 if both positions are equal or the antipode of each other - [is_great_cirle](crate::spherical::Sphere::is_great_circle)
///
/// # Examples
///
/// ```
/// use jord::{Angle, LatLong};
/// use jord::spherical::Sphere;
///
/// assert_eq!(
/// Angle::from_degrees(270.0),
/// Sphere::initial_bearing(LatLong::from_degrees(0.0, 1.0).to_nvector(), LatLong::from_degrees(0.0, 0.0).to_nvector())
/// );
/// ```
pub fn initial_bearing(p1: NVector, p2: NVector) -> Angle {
if !Self::is_great_circle(p1, p2) {
Angle::ZERO
} else {
Angle::from_radians(initial_bearing_radians(p1, p2)).normalised()
}
}
/// Computes the position at given fraction between this position and the given position.
/// Returns `None` if:
/// - the fraction is `< 0` or `> 1`,
/// - this position and the given position are the antipodes of one another.
pub fn interpolated_pos(p1: NVector, p2: NVector, f: f64) -> Option<NVector> {
if !(0.0..=1.0).contains(&f) || p1.is_antipode_of(p2) {
None
} else if f == 0.0 {
Some(p1)
} else if f == 1.0 {
Some(p2)
} else {
// angular distance in radians multiplied by the fraction: how far from v0.
let distance_radians = f * angle_radians_between(p1.as_vec3(), p2.as_vec3(), None);
// a vector representing the direction from v0 to v1.
let dir = (p1.as_vec3().stable_cross_prod(p2.as_vec3())).cross_prod_unit(p1.as_vec3());
let v = (p1.as_vec3() * distance_radians.cos() + dir * distance_radians.sin()).unit();
Some(NVector::new(v))
}
}
/// Computes the mean position of the given positions: the “center of gravity” of the given positions,
/// which and can be compared to the centroid of a geometrical shape (n.b. other definitions of mean exist).
///
/// The mean position is undefined if:
/// - no position are given (i.e `ps` is empty), or
/// - any 2 given positions are the antipode of one another.
///
/// # Examples
///
/// ```
/// use jord::LatLong;
/// use jord::spherical::Sphere;
///
/// let ps = vec![
/// LatLong::from_degrees(10.0, 10.0).to_nvector(),
/// LatLong::from_degrees(10.0, -10.0).to_nvector(),
/// LatLong::from_degrees(-10.0, -10.0).to_nvector(),
/// LatLong::from_degrees(-10.0, 10.0).to_nvector()
/// ];
///
/// let o_m = Sphere::mean_position(&ps);
/// assert!(o_m.is_some());
/// assert_eq!(
/// LatLong::from_degrees(0.0, 0.0),
/// LatLong::from_nvector(o_m.unwrap()).round_d7()
/// );
/// ```
pub fn mean_position(ps: &[NVector]) -> Option<NVector> {
if ps.is_empty() || contains_antipodal(ps) {
None
} else if ps.len() == 1 {
ps.first().cloned()
} else {
let vs = ps.iter().map(|nv| nv.as_vec3()).collect::<Vec<_>>();
let m = Vec3::mean(&vs);
Some(NVector::new(m))
}
}
/// Computes the mean position of the 3 given positions: the “center of gravity” of the given positions,
/// which and can be compared to the centroid of a geometrical shape (n.b. other definitions of mean exist).
///
/// The mean position is undefined if any 2 given positions are the antipode of one another.
///
/// # Examples
///
/// ```
/// use jord::{LatLong, NVector};
/// use jord::spherical::Sphere;
///
/// let p1 = NVector::from_lat_long_degrees(10.0, 0.0);
/// let p2 = NVector::from_lat_long_degrees(0.0, -10.0);
/// let p3 = NVector::from_lat_long_degrees(0.0, 10.0);
///
/// let o_m = Sphere::triangle_mean_position(p1, p2, p3);
/// assert!(o_m.is_some());
/// assert_eq!(
/// LatLong::from_degrees(3.3637274, 0.0),
/// LatLong::from_nvector(o_m.unwrap()).round_d7()
/// );
/// ```
pub fn triangle_mean_position(p1: NVector, p2: NVector, p3: NVector) -> Option<NVector> {
if p1.is_antipode_of(p2) || p1.is_antipode_of(p3) || p2.is_antipode_of(p3) {
None
} else {
Some(NVector::new(Vec3::mean(&[
p1.as_vec3(),
p2.as_vec3(),
p3.as_vec3(),
])))
}
}
/// Determines whether v0 if right of (negative integer), left of (positive integer) or on the
/// great circle (zero), from v1 to v2.
///
/// # Examples
///
/// ```
/// use jord::LatLong;
/// use jord::spherical::Sphere;
///
/// let p1 = LatLong::from_degrees(55.4295, 13.82).to_nvector();
/// let p2 = LatLong::from_degrees(56.0465, 12.6945).to_nvector();
/// let p3 = LatLong::from_degrees(56.0294, 14.1567).to_nvector();
///
/// assert_eq!(-1, Sphere::side(p1, p2, p3));
/// assert_eq!(1, Sphere::side(p1, p3, p2));
/// ```
pub fn side(p0: NVector, p1: NVector, p2: NVector) -> i8 {
let side = exact_side(p0.as_vec3(), p1.as_vec3(), p2.as_vec3());
if eq_zero(side) {
0
} else if side < 0.0 {
-1
} else {
1
}
}
/// Returns the angle turned from AB to BC. Angle is positive for left turn,
/// negative for right turn and 0 if all 3 positions are collinear (i.e. on the same great circle).
pub fn turn(a: NVector, b: NVector, c: NVector) -> Angle {
let n1 = a.as_vec3().orthogonal_to(b.as_vec3());
let n2 = b.as_vec3().orthogonal_to(c.as_vec3());
Angle::from_radians(angle_radians_between(n1, n2, Some(b.as_vec3())))
}
// kinematics
/// Calculates the position that the given vehicle will reach after the given time.
pub fn position_after(&self, vehicle: Vehicle, duration: Duration) -> NVector {
Sphere::EARTH.destination_pos(
vehicle.position(),
vehicle.bearing(),
vehicle.speed() * duration,
)
}
/// Computes the time at the closest point of approach (CPA) between the two given vehicles: the time at which the
/// 2 vehicles will be the closest assuming they both maintain a constant course and heading.
///
/// # Examples
///
/// ```
/// use jord::{Angle, Length, NVector, Speed, Vehicle};
/// use jord::spherical::Sphere;
///
/// let ownship = Vehicle::new(
/// NVector::from_lat_long_degrees(20.0, -60.0),
/// Angle::from_degrees(10.0),
/// Speed::from_knots(15.0),
/// );
///
/// let intruder = Vehicle::new(
/// NVector::from_lat_long_degrees(34.0, -50.0),
/// Angle::from_degrees(220.0),
/// Speed::from_knots(300.0),
/// );
///
/// let opt_time_at_cpa = Sphere::EARTH.time_to_cpa(ownship, intruder);
/// assert!(opt_time_at_cpa.is_some());
/// let time_at_cpa = opt_time_at_cpa.unwrap();
///
/// assert_eq!(113_961_40, time_at_cpa.as_millis());
///
/// // Position of ownship at CPA:
/// let p_cpa_own = Sphere::EARTH.position_after(ownship, time_at_cpa);
///
/// // Position of intruder at CPA:
/// let p_cpa_int = Sphere::EARTH.position_after(intruder, time_at_cpa);
///
/// // Distance between the 2 vehicles at CPA:
/// let d_cpa = Sphere::EARTH.distance(p_cpa_own, p_cpa_int);
/// assert_eq!(Length::from_metres(124_232.0), d_cpa.round_m());
///
/// ```
pub fn time_to_cpa(&self, ownship: Vehicle, intruder: Vehicle) -> Option<Duration> {
let r_nm = self.radius.as_nautical_miles();
let own_p0 = ownship.position().as_vec3();
let own_course = course(ownship);
let own_speed_knots = ownship.speed().as_knots();
let own_w = own_speed_knots / r_nm;
let int_p0 = intruder.position().as_vec3();
let int_course = course(intruder);
let int_speed_knots = intruder.speed().as_knots();
let int_w = int_speed_knots / r_nm;
let f = cpa_fn(own_p0, own_course, own_w, int_p0, int_course, int_w, false);
let df = cpa_fn(own_p0, own_course, own_w, int_p0, int_course, int_w, true);
let hours_to_cpa = newton_raphson(
f,
df,
0.0,
Self::ONE_MILLI_HOURS,
Self::CPA_NR_MAX_ITERATIONS,
);
hours_to_cpa.filter(|h| h >= &0.0).map(hours_to_duration)
}
/// Calculates the maximum time required by an interceptor at the given position to intercept the given intruder: i.e. the interceptor is
/// travelling at the minimum speed required to achieve intercept.
///
/// # Examples
///
/// ```
/// use jord::{Angle, Length, NVector, Speed, Vehicle};
/// use jord::spherical::Sphere;
///
/// let interceptor_pos = NVector::from_lat_long_degrees(20.0, -60.0);
/// let intruder = Vehicle::new(
/// NVector::from_lat_long_degrees(34.0, -50.0),
/// Angle::from_degrees(220.0),
/// Speed::from_knots(600.0)
/// );
///
/// let opt_max_time = Sphere::EARTH.max_time_to_intercept(interceptor_pos, intruder);
/// assert!(opt_max_time.is_some());
///
/// let max_time = opt_max_time.unwrap();
/// assert_eq!(5_993_823, max_time.as_millis());
///
/// // position of the interception = position of intruder at time of interception:
/// let interception_pos = Sphere::EARTH.position_after(intruder, max_time);
///
/// // distance to interception:
/// let interception_distance = Sphere::EARTH.distance(interceptor_pos, interception_pos);
///
/// // minimum interceptor speed to achieve intercept:
/// let minimum_speed = interception_distance / max_time;
/// assert_eq!(53.0, minimum_speed.as_knots().round());
/// ```
pub fn max_time_to_intercept(
&self,
interceptor_pos: NVector,
intruder: Vehicle,
) -> Option<Duration> {
let r_m: f64 = self.radius.as_metres();
let v10 = interceptor_pos.as_vec3();
let v20 = intruder.position().as_vec3();
let c2 = course(intruder);
let int_speed_mps = intruder.speed().as_metres_per_second();
let w2 = int_speed_mps / r_m;
let v10v20 = v10.dot_prod(v20);
let v10c2 = v10.dot_prod(c2);
// initial angular distance between target and interceptor.
let s0 = angle_radians_between(v10, v20, None);
// assume target is travelling towards interceptor.
let t0 = r_m * s0 / int_speed_mps;
let st: Box<dyn Fn(f64) -> f64> = sep(v10, v20, c2, int_speed_mps, r_m);
let t_intercept_secs = int_min_nr_rec(v10v20, v10c2, w2, st, t0, 0);
if t_intercept_secs < 0.0 {
None
} else {
Some(Duration::from_secs_f64(t_intercept_secs))
}
}
/// Calculates time required by an interceptor at the given position and travelling at the given speed to intercept the given intruder.
///
/// # Examples
///
/// ```
/// use jord::{Angle, Length, NVector, Speed, Vehicle};
/// use jord::spherical::Sphere;
///
/// let interceptor_pos = NVector::from_lat_long_degrees(20.0, -60.0);
/// let intruder = Vehicle::new(
/// NVector::from_lat_long_degrees(34.0, -50.0),
/// Angle::from_degrees(220.0),
/// Speed::from_knots(600.0)
/// );
///
/// // minimum interceptor speed to achieve intercept is ~ 53 knots
/// assert!(Sphere::EARTH.time_to_intercept(interceptor_pos, Speed::from_knots(50.0), intruder).is_none());
///
/// let opt_time = Sphere::EARTH.time_to_intercept(interceptor_pos, Speed::from_knots(700.0), intruder);
/// assert!(opt_time.is_some());
/// assert_eq!(2_764_688, opt_time.unwrap().as_millis());
/// ```
pub fn time_to_intercept(
&self,
interceptor_pos: NVector,
interceptor_speed: Speed,
intruder: Vehicle,
) -> Option<Duration> {
let r_m: f64 = self.radius.as_metres();
let v10 = interceptor_pos.as_vec3();
let intercept_speed_mps = interceptor_speed.as_metres_per_second();
let w1 = intercept_speed_mps / r_m;
let v20 = intruder.position().as_vec3();
let c2 = course(intruder);
let int_speed_mps = intruder.speed().as_metres_per_second();
let w2 = int_speed_mps / r_m;
let v10v20 = v10.dot_prod(v20);
let v10c2 = v10.dot_prod(c2);
let t0 = 0.1;
let st: Box<dyn Fn(f64) -> f64> = sep(v10, v20, c2, int_speed_mps, r_m);
let t_intercept_secs = int_spd_nr_rec(v10v20, v10c2, w1, w2, st, t0, 0);
if t_intercept_secs < 0.0 {
None
} else {
Some(Duration::from_secs_f64(t_intercept_secs))
}
}
}
impl Surface for Sphere {
fn geodetic_to_geocentric(&self, pos: GeodeticPos) -> GeocentricPos {
let h = self.radius + pos.height();
GeocentricPos::from_vec3_metres(h.as_metres() * pos.horizontal_position().as_vec3())
}
fn geocentric_to_geodetic(&self, pos: GeocentricPos) -> GeodeticPos {
let h = Length::from_metres(pos.as_metres().norm()) - self.radius;
GeodeticPos::new(NVector::new(Vec3::unit(pos.as_metres())), h)
}
}
// nanoseconds in one hour.
const NANOS_PER_HOUR: f64 = 3_600.0 * 1_000.0 * 1_000_000.0;
fn final_bearing_radians(v1: NVector, v2: NVector) -> f64 {
initial_bearing_radians(v2, v1) + PI
}
fn initial_bearing_radians(v1: NVector, v2: NVector) -> f64 {
// great circle through v1 & v2.
let gc1 = v1.as_vec3().cross_prod(v2.as_vec3());
// this is equivalent to -easting(v1), but avoids the creation of
// an intermediate Vec3.
// -y if at pole or great circle through v1 & north pole (v x [0, 0, 1])
let gc2 = if v1.as_vec3().z().abs() == 1.0 {
Vec3::NEG_UNIT_Y
} else {
Vec3::new(v1.as_vec3().y(), -v1.as_vec3().x(), 0.0)
};
angle_radians_between(gc1, gc2, Some(v1.as_vec3()))
}
/// Determines if the given vector contains antipodal positions.
fn contains_antipodal(ps: &[NVector]) -> bool {
for p in ps {
let a = p.antipode();
let found = ps.iter().any(|&o| o == a);
if found {
return true;
}
}
false
}
/// Implementation of the Newton Raphson root-finding algorithm.
/// See: https://en.wikipedia.org/wiki/Newton%27s_method
fn newton_raphson<F>(f: F, df: F, x0: f64, epsilon: f64, max_iters: u64) -> Option<f64>
where
F: Fn(f64) -> f64,
{
let mut x = x0;
for _i in 0..max_iters {
let y = f(x);
let d = df(x);
if d == 0.0 {
return None;
}
let m = y / d;
if m.abs() < epsilon {
return Some(x);
}
x -= m;
}
None
}
fn course(vehicle: Vehicle) -> Vec3 {
let ll = LatLong::from_nvector(vehicle.position());
let lat_rads = ll.latitude().as_radians();
let lng_rads = ll.longitude().as_radians();
let bearing_rads = vehicle.bearing().as_radians();
let r = (course_rz(-lng_rads) * course_ry(lat_rads)) * course_rx(bearing_rads);
Vec3::UNIT_Z * r
}
fn course_rx(theta: f64) -> Mat33 {
let c = theta.cos();
let s = theta.sin();
Mat33::new(Vec3::UNIT_X, Vec3::new(0.0, c, s), Vec3::new(0.0, -s, c))
}
fn course_ry(theta: f64) -> Mat33 {
let c = theta.cos();
let s = theta.sin();
Mat33::new(Vec3::new(c, 0.0, -s), Vec3::UNIT_Y, Vec3::new(s, 0.0, c))
}
fn course_rz(theta: f64) -> Mat33 {
let c = theta.cos();
let s = theta.sin();
Mat33::new(Vec3::new(c, s, 0.0), Vec3::new(-s, c, 0.0), Vec3::UNIT_Z)
}
/// Functions for iteratively solving for CPA.
fn cpa_fn(
p10: Vec3,
c10: Vec3,
w1: f64,
p20: Vec3,
c20: Vec3,
w2: f64,
derivate: bool,
) -> Box<dyn Fn(f64) -> f64> {
let a = -(w1 * p10.dot_prod(c20) + w2 * p20.dot_prod(c10));
let b = w1 * c10.dot_prod(p20) + w2 * c20.dot_prod(p10);
let c = -(w1 * p10.dot_prod(p20) - w2 * c20.dot_prod(c10));
let d = w1 * c10.dot_prod(c20) - w2 * p20.dot_prod(p10);
if derivate {
let func = move |t: f64| -> f64 {
let w1t: f64 = w1 * t;
let w2t = w2 * t;
let sw1t = w1t.sin();
let sw2t = w2t.sin();
let cw1t = w1t.cos();
let cw2t = w2t.cos();
-(c * w2 + d * w1) * sw1t * sw2t
+ (d * w2 + c * w1) * cw1t * cw2t
+ (a * w2 - b * w1) * sw1t * cw2t
- (b * w2 - a * w1) * cw1t * sw2t
};
Box::new(func)
} else {
let func = move |t: f64| -> f64 {
let w1t = w1 * t;
let w2t = w2 * t;
let sw1t = w1t.sin();
let sw2t = w2t.sin();
let cw1t = w1t.cos();
let cw2t = w2t.cos();
a * sw1t * sw2t + b * cw1t * cw2t + c * sw1t * cw2t + d * cw1t * sw2t
};
Box::new(func)
}
}
/// Converts the given amount of decimal hours into a [Duration].
fn hours_to_duration(hours: f64) -> Duration {
let nanos: u64 = (hours * NANOS_PER_HOUR).round() as u64;
Duration::from_nanos(nanos)
}
/// angular separation in radians at ti (input to returned function) between v10 and track with initial position v20, course c2 and speed s2.
fn sep(v10: Vec3, v20: Vec3, c2: Vec3, s2_mps: f64, radius_m: f64) -> Box<dyn Fn(f64) -> f64> {
let func = move |t_secs: f64| -> f64 {
angle_radians_between(v10, pos(v20, c2, s2_mps, t_secs, radius_m), None)
};
Box::new(func)
}
/// position from course, speed (mps) and seconds.
fn pos(v0: Vec3, c: Vec3, mps: f64, t_secs: f64, radius_m: f64) -> Vec3 {
let a = mps / radius_m * t_secs;
v0 * a.cos() + c * a.sin()
}
const INTERCEPT_NR_MAX_ITERATIONS: u64 = 50;
const INTERCEPT_NR_EPSILON: f64 = 1e-11;
/// Newton-Raphson for min speed intercept.
fn int_min_nr_rec<F>(v10v20: f64, v10c2: f64, w2: f64, sep: F, ti_secs: f64, i: u64) -> f64
where
F: Fn(f64) -> f64,
{
if i == INTERCEPT_NR_MAX_ITERATIONS {
-1.0 // no convergence
} else {
let cosw2t = (w2 * ti_secs).cos();
let sinw2t = (w2 * ti_secs).sin();
let v10dv2dt = -w2 * (v10v20 * sinw2t - v10c2 * cosw2t);
let v10d2v2dt2 = (-1.0 * w2 * w2) * (v10v20 * cosw2t + v10c2 * sinw2t);
let si = sep(ti_secs);
let sin_si = si.sin();
let a = -1.0 / sin_si;
let b = si.cos() / (sin_si * sin_si);
let f = ti_secs * a * v10dv2dt - si;
let d2sdt2 = a * (b * v10dv2dt * v10dv2dt + v10d2v2dt2);
let df = ti_secs * d2sdt2;
let fi = f / df;
let ti1_secs = ti_secs - fi;
if fi.abs() < INTERCEPT_NR_EPSILON {
ti1_secs
} else {
int_min_nr_rec(v10v20, v10c2, w2, sep, ti1_secs, i + 1)
}
}
}
/// Newton-Raphson for speed intercept.
fn int_spd_nr_rec<F>(v10v20: f64, v10c2: f64, w1: f64, w2: f64, sep: F, ti_secs: f64, i: u64) -> f64
where
F: Fn(f64) -> f64,
{
if i == INTERCEPT_NR_MAX_ITERATIONS {
-1.0 // no convergence
} else {
let cosw2t = (w2 * ti_secs).cos();
let sinw2t = (w2 * ti_secs).sin();
let si = sep(ti_secs);
let f = si / ti_secs - w1;
let dsdt = (w2 * (v10v20 * sinw2t - v10c2 * cosw2t)) / si.sin();
let df = (dsdt - (si / ti_secs)) / ti_secs;
let fi = f / df;
let ti1_secs = ti_secs - fi;
if fi.abs() < INTERCEPT_NR_EPSILON {
ti1_secs
} else {
int_spd_nr_rec(v10v20, v10c2, w1, w2, sep, ti1_secs, i + 1)
}
}
}
#[cfg(test)]
mod tests {
// TODO(CL): along_track_distance, cross_track_distance
use std::{f64::consts::PI, time::Duration};
// destination.
#[test]
fn destination_across_date_line() {
let p = NVector::from_lat_long_degrees(0.0, 154.0);
let actual = Sphere::EARTH.destination_pos(
p,
Angle::from_degrees(90.0),
Length::from_kilometres(5000.0),
);
let expected = NVector::from_lat_long_degrees(0.0, -161.0339254);
assert_nv_eq_d7(expected, actual);
}
#[test]
fn destination_from_north_pole() {
let expected = NVector::from_lat_long_degrees(45.0, 0.0);
let distance = Sphere::EARTH.radius() * (PI / 4.0);
let actual = Sphere::EARTH.destination_pos(
NVector::from_lat_long_degrees(90.0, 0.0),
Angle::from_degrees(180.0),
distance,
);
assert_nv_eq_d7(expected, actual);
}
#[test]
fn destination_from_south_pole() {
let expected = NVector::from_lat_long_degrees(-45.0, 0.0);
let distance = Sphere::EARTH.radius() * (PI / 4.0);
let actual = Sphere::EARTH.destination_pos(
NVector::from_lat_long_degrees(-90.0, 0.0),
Angle::ZERO,
distance,
);
assert_nv_eq_d7(expected, actual);
}
#[test]
fn destination_negative_distance() {
let p = NVector::from_lat_long_degrees(0.0, 0.0);
// equivalent of -10 degree of longitude.
let d = Sphere::EARTH.radius() * (-2.0 * PI / 36.0);
let actual = Sphere::EARTH.destination_pos(p, Angle::from_degrees(90.0), d);
let expected = NVector::from_lat_long_degrees(0.0, -10.0);
assert_nv_eq_d7(expected, actual);
}
#[test]
fn destination_travelled_longitude_greater_than_90() {
let p = NVector::from_lat_long_degrees(60.2, 11.1);
let d = Sphere::EARTH.destination_pos(
p,
Angle::from_degrees(12.4),
Length::from_nautical_miles(2000.0),
);
let e = NVector::from_lat_long_degrees(82.6380125, 124.1259551);
assert_nv_eq_d7(e, d);
}
#[test]
fn destination_zero_distance() {
let p = NVector::from_lat_long_degrees(55.6050, 13.0038);
assert_eq!(
p,
Sphere::EARTH.destination_pos(p, Angle::from_degrees(96.0217), Length::ZERO,)
);
}
// distance.
#[test]
fn distance_accross_date_line() {
let p1 = NVector::from_lat_long_degrees(50.066389, -179.999722);
let p2 = NVector::from_lat_long_degrees(50.066389, 179.999722);
assert_eq!(
Length::from_metres(39.685),
Sphere::EARTH.distance(p1, p2).round_mm()
);
}
#[test]
fn distance_between_poles() {
assert_eq!(
Length::from_metres(20_015_089.309),
Sphere::EARTH
.distance(
NVector::from_lat_long_degrees(90.0, 0.0),
NVector::from_lat_long_degrees(-90.0, 0.0)
)
.round_mm()
);
}
#[test]
fn distance_test() {
let p1 = NVector::from_lat_long_degrees(50.066389, -5.714722);
let p2 = NVector::from_lat_long_degrees(58.643889, -3.07);
assert_eq!(
Length::from_metres(968_853.666),
Sphere::EARTH.distance(p1, p2).round_mm()
);
}
#[test]
fn distance_transitivity() {
let p1 = NVector::from_lat_long_degrees(0.0, 0.0);
let p2 = NVector::from_lat_long_degrees(0.0, 10.0);
let p3 = NVector::from_lat_long_degrees(0.0, 20.0);
let d1 = Sphere::EARTH.distance(p1, p2);
let d2 = Sphere::EARTH.distance(p2, p3);
let actual = (d1 + d2).round_mm();
assert_eq!(actual, Sphere::EARTH.distance(p1, p3).round_mm());
}
#[test]
fn distance_zero() {
let p = NVector::from_lat_long_degrees(50.066389, -5.714722);
assert_eq!(Length::ZERO, Sphere::EARTH.distance(p, p));
}
/// final_bearing.
#[test]
fn final_bearing_at_equator_going_east() {
let p1 = NVector::from_lat_long_degrees(0.0, 0.0);
let p2 = NVector::from_lat_long_degrees(0.0, 1.0);
assert_eq!(Angle::from_degrees(90.0), Sphere::final_bearing(p1, p2));
}
#[test]
fn final_bearing_at_equator_going_west() {
let p1 = NVector::from_lat_long_degrees(0.0, 1.0);
let p2 = NVector::from_lat_long_degrees(0.0, 0.0);
assert_eq!(Angle::from_degrees(270.0), Sphere::final_bearing(p1, p2));
}
#[test]
fn final_bearing_coincidental() {
let p = NVector::from_lat_long_degrees(50.0, -18.0);
assert_eq!(Angle::ZERO, Sphere::final_bearing(p, p));
}
#[test]
fn final_bearing_same_longitude_going_north() {
let p1 = NVector::from_lat_long_degrees(50.0, -5.0);
let p2 = NVector::from_lat_long_degrees(58.0, -5.0);
assert_eq!(Angle::ZERO, Sphere::final_bearing(p1, p2));
}
#[test]
fn final_bearing_same_longitude_going_south() {
let p1 = NVector::from_lat_long_degrees(58.0, -5.0);
let p2 = NVector::from_lat_long_degrees(50.0, -5.0);
assert_eq!(Angle::from_degrees(180.0), Sphere::final_bearing(p1, p2));
}
#[test]
fn final_bearing_test() {
let p1 = NVector::from_lat_long_degrees(50.06638889, -5.71472222);
let p2 = NVector::from_lat_long_degrees(58.64388889, -3.07);
assert_eq!(
Angle::from_degrees(11.2752013),
Sphere::final_bearing(p1, p2).round_d7()
);
assert_eq!(
Angle::from_degrees(189.1198181),
Sphere::final_bearing(p2, p1).round_d7()
);
let p1 = NVector::from_lat_long_degrees(-53.99472222, -25.9875);
let p2 = NVector::from_lat_long_degrees(54.0, 154.0);
assert_eq!(
Angle::from_degrees(125.6839551),
Sphere::final_bearing(p1, p2).round_d7()
);
}
// initial_bearing
#[test]
fn initial_bearing_antipodal() {
let np = NVector::from_lat_long_degrees(90.0, 0.0);
let sp = NVector::from_lat_long_degrees(-90.0, 0.0);
assert_eq!(Angle::ZERO, Sphere::initial_bearing(np, sp));
assert_eq!(Angle::ZERO, Sphere::initial_bearing(sp, np));
}
#[test]
fn initial_bearing_at_equator_going_east() {
let p1 = NVector::from_lat_long_degrees(0.0, 0.0);
let p2 = NVector::from_lat_long_degrees(0.0, 1.0);
assert_eq!(Angle::from_degrees(90.0), Sphere::initial_bearing(p1, p2));
}
#[test]
fn initial_bearing_at_equator_going_west() {
let p1 = NVector::from_lat_long_degrees(0.0, 1.0);
let p2 = NVector::from_lat_long_degrees(0.0, 0.0);
assert_eq!(Angle::from_degrees(270.0), Sphere::initial_bearing(p1, p2));
}
#[test]
fn initial_bearing_coincidental() {
let p = NVector::from_lat_long_degrees(50.0, -18.0);
assert_eq!(Angle::ZERO, Sphere::initial_bearing(p, p));
}
#[test]
fn initial_bearing_from_north_pole() {
assert_eq!(
Angle::from_degrees(26.0),
Sphere::initial_bearing(
NVector::from_lat_long_degrees(90.0, 0.0),
NVector::from_lat_long_degrees(50.0, 154.0)
)
.round_d7()
);
}
#[test]
fn initial_bearing_north_pole_to_date_line() {
assert_eq!(
Angle::ZERO,
Sphere::initial_bearing(
NVector::from_lat_long_degrees(90.0, 0.0),
NVector::from_lat_long_degrees(50.0, 180.0)
)
.round_d7()
);
}
#[test]
fn initial_bearing_same_longitude_going_north() {
let p1 = NVector::from_lat_long_degrees(50.0, -5.0);
let p2 = NVector::from_lat_long_degrees(58.0, -5.0);
assert_eq!(Angle::ZERO, Sphere::initial_bearing(p1, p2).round_d7());
}
#[test]
fn initial_bearing_same_longitude_going_south() {
let p1 = NVector::from_lat_long_degrees(58.0, -5.0);
let p2 = NVector::from_lat_long_degrees(50.0, -5.0);
assert_eq!(
Angle::from_degrees(180.0),
Sphere::initial_bearing(p1, p2).round_d7()
);
}
#[test]
fn initial_bearing_from_south_pole() {
assert_eq!(
Angle::from_degrees(154.0),
Sphere::initial_bearing(
NVector::from_lat_long_degrees(-90.0, 0.0),
NVector::from_lat_long_degrees(50.0, 154.0)
)
.round_d7()
);
}
#[test]
fn initial_bearing_south_pole_to_date_line() {
assert_eq!(
Angle::from_degrees(180.0),
Sphere::initial_bearing(
NVector::from_lat_long_degrees(-90.0, 0.0),
NVector::from_lat_long_degrees(50.0, 180.0)
)
.round_d7()
);
}
#[test]
fn initial_bearing_test() {
let p1 = NVector::from_lat_long_degrees(50.06638889, -5.71472222);
let p2 = NVector::from_lat_long_degrees(58.64388889, -3.07);
assert_eq!(
Angle::from_degrees(9.1198181),
Sphere::initial_bearing(p1, p2).round_d7()
);
assert_eq!(
Angle::from_degrees(191.2752013),
Sphere::initial_bearing(p2, p1).round_d7()
);
}
// interpolated
#[test]
fn interpolated_antipodal() {
let p = NVector::from_lat_long_degrees(90.0, 0.0);
assert!(Sphere::interpolated_pos(p, p.antipode(), 0.5).is_none());
}
#[test]
fn interpolated_f0() {
let p1 = NVector::from_lat_long_degrees(90.0, 0.0);
let p2 = NVector::from_lat_long_degrees(0.0, 0.0);
assert_eq!(Some(p1), Sphere::interpolated_pos(p1, p2, 0.0));
}
#[test]
fn interpolated_f1() {
let p1 = NVector::from_lat_long_degrees(90.0, 0.0);
let p2 = NVector::from_lat_long_degrees(0.0, 0.0);
assert_eq!(Some(p2), Sphere::interpolated_pos(p1, p2, 1.0));
}
#[test]
fn interpolated_invalid_f() {
let p1 = NVector::from_lat_long_degrees(0.0, 0.0);
let p2 = NVector::from_lat_long_degrees(1.0, 0.0);
assert!(Sphere::interpolated_pos(p1, p2, -0.1).is_none());
assert!(Sphere::interpolated_pos(p1, p2, 1.1).is_none());
}
#[test]
fn interpolated_half() {
assert_eq!(
Some(NVector::from_lat_long_degrees(0.0, 0.0)),
Sphere::interpolated_pos(
NVector::from_lat_long_degrees(10.0, 0.0),
NVector::from_lat_long_degrees(-10.0, 0.0),
0.5
)
);
}
#[test]
fn interpolated_side() {
let p0 = NVector::from_lat_long_degrees(154.0, 54.0);
let p1 = NVector::from_lat_long_degrees(155.0, 55.0);
let i = Sphere::interpolated_pos(p0, p1, 0.25).unwrap();
assert_eq!(0, Sphere::side(i, p0, p1));
}
#[test]
fn interpolated_transitivity() {
let p0 = NVector::from_lat_long_degrees(10.0, 0.0);
let p1 = NVector::from_lat_long_degrees(-10.0, 0.0);
let expected = Sphere::interpolated_pos(p0, p1, 0.5).unwrap();
let actual = Sphere::interpolated_pos(
Sphere::interpolated_pos(p0, p1, 0.25).unwrap(),
p1,
1.0 / 3.0,
);
assert_opt_nv_eq_d7(expected, actual);
}
// mean
use crate::{
positions::{assert_nv_eq_d7, assert_opt_nv_eq_d7},
spherical::Sphere,
Angle, LatLong, Length, NVector, Speed, Vec3, Vehicle,
};
use super::newton_raphson;
#[test]
fn mean_antipodal() {
let p = NVector::from_lat_long_degrees(0.0, 0.0);
assert!(Sphere::mean_position(&vec!(p, p.antipode())).is_none());
}
#[test]
fn mean_empty() {
let vs: Vec<NVector> = Vec::new();
assert!(Sphere::mean_position(&vs).is_none());
}
#[test]
fn mean_test() {
let vs = vec![
NVector::from_lat_long_degrees(10.0, 10.0),
NVector::from_lat_long_degrees(10.0, -10.0),
NVector::from_lat_long_degrees(-10.0, -10.0),
NVector::from_lat_long_degrees(-10.0, 10.0),
];
assert_opt_nv_eq_d7(
NVector::from_lat_long_degrees(0.0, 0.0),
Sphere::mean_position(&vs),
);
}
#[test]
fn mean_one() {
assert_eq!(
Some(NVector::from_lat_long_degrees(0.0, 0.0)),
Sphere::mean_position(&vec!(NVector::from_lat_long_degrees(0.0, 0.0)))
);
}
// side
#[test]
fn side_collinear() {
assert_eq!(
0,
Sphere::side(
NVector::from_lat_long_degrees(0.0, 0.0),
NVector::from_lat_long_degrees(45.0, 0.0),
NVector::from_lat_long_degrees(90.0, 0.0)
)
);
}
#[test]
fn side_equal() {
let v1 = NVector::new(Vec3::new_unit(1.0, 2.0, 3.0));
// largest component is z, orthogonal vector in x-z plan.
assert_eq!(0, Sphere::side(NVector::new(Vec3::UNIT_Y), v1, v1));
assert_eq!(
-1,
Sphere::side(NVector::new(Vec3::new_unit(1.0, -3.0, 0.0)), v1, v1)
);
assert_eq!(
1,
Sphere::side(NVector::new(Vec3::new_unit(-1.0, 3.0, 0.0)), v1, v1)
);
}
#[test]
fn side_same_meridian() {
let v0 = NVector::from_lat_long_degrees(-78.0, 55.0);
let v1 = NVector::from_lat_long_degrees(-85.0, 55.0);
let v2 = NVector::from_lat_long_degrees(10.0, 55.0);
assert_eq!(0, Sphere::side(v0, v1, v2));
assert_eq!(0, Sphere::side(v0, v2, v1));
}
#[test]
fn side_opposite() {
let v1 = NVector::new(Vec3::new_unit(1.0, 2.0, 3.0));
let v2 = NVector::new(Vec3::new_unit(-1.0, -2.0, -3.0));
// largest component is z, orthogonal vector in x-z plan.
assert_eq!(0, Sphere::side(NVector::new(Vec3::UNIT_Y), v1, v2));
assert_eq!(
-1,
Sphere::side(NVector::new(Vec3::new_unit(1.0, -3.0, 0.0)), v1, v2)
);
assert_eq!(
1,
Sphere::side(NVector::new(Vec3::new_unit(-1.0, 3.0, 0.0)), v1, v2)
);
}
#[test]
fn side_resolution() {
// 1 arc microsecond.
let one_mas = Angle::from_degrees(1.0 / 3600000000.0);
let lng = Angle::from_degrees(55.0);
let v1 = NVector::from_lat_long_degrees(-85.0, lng.as_degrees());
let v2 = NVector::from_lat_long_degrees(10.0, lng.as_degrees());
let right = LatLong::new(Angle::from_degrees(-78.0), lng + one_mas).to_nvector();
assert_eq!(-1, Sphere::side(right, v1, v2));
let left = LatLong::new(Angle::from_degrees(-78.0), lng - one_mas).to_nvector();
assert_eq!(1, Sphere::side(left, v1, v2));
}
// turn
#[test]
fn turn_collinear() {
let actual = Sphere::turn(
NVector::from_lat_long_degrees(0.0, 0.0),
NVector::from_lat_long_degrees(45.0, 0.0),
NVector::from_lat_long_degrees(90.0, 0.0),
);
assert_eq!(Angle::ZERO, actual);
}
#[test]
fn turn_left() {
let actual = Sphere::turn(
NVector::from_lat_long_degrees(0.0, 0.0),
NVector::from_lat_long_degrees(45.0, 0.0),
NVector::from_lat_long_degrees(60.0, -10.0),
);
assert_eq!(Angle::from_radians(0.3175226173130951), actual);
}
#[test]
fn turn_right() {
let actual = Sphere::turn(
NVector::from_lat_long_degrees(0.0, 0.0),
NVector::from_lat_long_degrees(45.0, 0.0),
NVector::from_lat_long_degrees(60.0, 10.0),
);
assert_eq!(Angle::from_radians(-0.3175226173130951), actual);
}
// newton_raphson
#[test]
fn newton_raphson_line() {
let f: &dyn Fn(f64) -> f64 = &|x| 3.0 * x + 1.0;
let df: &dyn Fn(f64) -> f64 = &|_| 3.0;
let x0 = 0.0;
let r = newton_raphson(f, df, x0, 1e-15, 100);
assert_eq!(Some(-1.0 / 3.0), r);
}
#[test]
fn newton_raphson_parabola() {
let f: &dyn Fn(f64) -> f64 = &|x| x * x - 1.0;
let df: &dyn Fn(f64) -> f64 = &|x| 2.0 * x;
let mut x0 = 0.0;
let mut r: Option<f64> = newton_raphson(f, df, x0, 1e-15, 100);
assert!(r.is_none());
x0 = 0.1;
r = newton_raphson(f, df, x0, 1e-15, 100);
assert_eq!(Some(1.0), r);
x0 = -0.1;
r = newton_raphson(f, df, x0, 1e-15, 100);
assert_eq!(Some(-1.0), r);
}
#[test]
fn newton_raphson_sinusoid() {
let f: &dyn Fn(f64) -> f64 = &|x| x.sin();
let df: &dyn Fn(f64) -> f64 = &|x| x.cos();
let mut x0 = 0.0;
// Initial value is root.
let mut r: Option<f64> = newton_raphson(f, df, x0, 1e-15, 100);
assert_eq!(Some(0.0), r);
// No root, derivative is 0.
x0 = PI / 2.0;
r = newton_raphson(f, df, x0, 1e-15, 100);
assert!(r.is_none());
// Second root.
x0 = PI * 3.0 / 4.0;
r = newton_raphson(f, df, x0, 1e-15, 100);
assert_eq!(Some(PI), r);
}
// time to CPA
#[test]
fn time_to_cpa_catch_up() {
// faster vehicle chases other vehicle on the same great circle.
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(-24.0, 129.0),
Angle::from_degrees(45.0),
Speed::from_knots(405.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(-23.40981138888889, 129.64166694444444),
Angle::from_degrees(44.742017777777775),
Speed::from_knots(400.0),
);
assert_time_to_cpa(
Duration::from_secs(10 * 60 * 60),
Sphere::EARTH.time_to_cpa(ownship, intruder),
);
}
#[test]
fn time_to_cpa_same_fleeing_along_equator() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(0.0, 0.1),
Angle::from_degrees(90.0),
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(0.0, -0.1),
Angle::from_degrees(270.0),
Speed::from_knots(400.0),
);
assert!(Sphere::EARTH.time_to_cpa(ownship, intruder).is_none());
}
#[test]
fn time_to_cpa_same_head_on_along_equator() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(0.0, -0.1),
Angle::from_degrees(90.0),
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(0.0, 0.1),
Angle::from_degrees(270.0),
Speed::from_knots(400.0),
);
assert_time_to_cpa(
elapsed_at_knots(
800.0,
(Angle::from_degrees(0.2) * Sphere::EARTH.radius()).as_nautical_miles(),
),
Sphere::EARTH.time_to_cpa(ownship, intruder),
);
}
#[test]
fn time_to_cpa_head_on_over_north_pole() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(89.0, 0.0),
Angle::ZERO,
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(89.0, 180.0),
Angle::ZERO,
Speed::from_knots(400.0),
);
assert_time_to_cpa(
elapsed_at_knots(
800.0,
(Angle::from_degrees(2.0) * Sphere::EARTH.radius()).as_nautical_miles(),
),
Sphere::EARTH.time_to_cpa(ownship, intruder),
);
}
#[test]
fn time_to_cpa_test() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(20.0, -60.0),
Angle::from_degrees(10.0),
Speed::from_knots(15.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(34.0, -50.0),
Angle::from_degrees(220.0),
Speed::from_knots(300.0),
);
assert_time_to_cpa(
Duration::from_millis(113_961_40),
Sphere::EARTH.time_to_cpa(ownship, intruder),
);
}
#[test]
fn time_to_cpa_trailing_ships() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(20.0, 30.0),
Angle::from_degrees(20.000959722222223),
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(20.00211277777778, 30.000818333333335),
Angle::from_degrees(20.00169861111111),
Speed::from_knots(400.0),
);
assert_time_to_cpa(
Duration::from_millis(4_177),
Sphere::EARTH.time_to_cpa(ownship, intruder),
);
}
#[test]
fn time_to_cpa_trailing_ships_same_speed() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(20.0, 30.0),
Angle::from_degrees(20.0000000844),
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(20.0021127100, 30.0008183256),
Angle::from_degrees(20.0002805853),
Speed::from_knots(400.0),
);
assert!(Sphere::EARTH.time_to_cpa(ownship, intruder).is_none());
}
#[test]
fn time_to_cpa_trailing_ships_same_speed_equator() {
let ownship = Vehicle::new(
NVector::from_lat_long_degrees(0.0, 1.0),
Angle::from_degrees(90.0),
Speed::from_knots(400.0),
);
let intruder = Vehicle::new(
NVector::from_lat_long_degrees(0.0, 1.0000001),
Angle::from_degrees(90.0),
Speed::from_knots(400.0),
);
assert!(Sphere::EARTH.time_to_cpa(ownship, intruder).is_none());
}
fn assert_time_to_cpa(expected: Duration, actual: Option<Duration>) {
assert!(actual.is_some());
let a_ms = actual.unwrap().as_millis() as i128;
let e_ms = expected.as_millis() as i128;
let diff = (a_ms - e_ms).abs();
assert!(
diff < 100,
"expected {:?}ms but was {:?}ms - diff = {:?}ms",
expected.as_millis(),
actual.unwrap().as_millis(),
diff
);
}
/// Time taken to cover a distance at a speed.
fn elapsed_at_knots(knots: f64, nm: f64) -> Duration {
let millis: u64 = (nm / knots * 60.0 * 60.0 * 1000.0).round() as u64;
Duration::from_millis(millis)
}
}