jit-assembler 0.3.0

A multi-architecture JIT assembler library for runtime code generation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# jit-assembler

A multi-architecture JIT assembler library for runtime code generation that works on any host architecture.

## Features

- **Multi-architecture support**: Generate machine code for different target architectures
- **Host-independent**: Runs on any host architecture (x86_64, ARM64, etc.) to generate target code
- **No-std compatible**: Works in both `std` and `no_std` environments
- **Type-safe**: Leverages Rust's type system for safe instruction generation
- **Dual API**: Both macro-based DSL and builder pattern for different use cases
- **IDE-friendly**: Full autocomplete and type checking support
- **JIT execution**: Direct execution of assembled code as functions (std-only)
- **Register usage tracking**: Analyze register usage patterns for optimization and ABI compliance (`register-tracking` feature)

## Supported Architectures

- **RISC-V 64-bit** (`riscv` feature, enabled by default)
- **AArch64** (`aarch64` feature, enabled by default) - Basic arithmetic and logical operations
- **x86-64** (`x86_64` feature) - Coming soon

## Usage

Add this to your `Cargo.toml`:

```toml
[dependencies]
jit-assembler = "0.3"
```

### Basic Usage

```rust
use jit_assembler::riscv::{reg, csr, Riscv64InstructionBuilder};
use jit_assembler::riscv64_asm;

// Macro style (concise and assembly-like)
let instructions = riscv64_asm! {
    csrrw(reg::RA, csr::MSTATUS, reg::SP);   // CSR read-write using aliases
    csrr(reg::T0, csr::MSTATUS);             // CSR read (alias)
    addi(reg::A0, reg::ZERO, 100);           // Add immediate using aliases
    add(reg::A1, reg::A0, reg::SP);          // Register add with aliases
    beq(reg::A0, reg::A1, 8);                // Branch if equal
    jal(reg::RA, 0x1000);                    // Jump and link
    ret();                                   // Return (alias for jalr x0, x1, 0)
};

// Method chaining style (recommended for programmatic use)
let mut builder = Riscv64InstructionBuilder::new();
let instructions2 = builder
    .csrrw(reg::RA, csr::MSTATUS, reg::SP)   // CSR read-write using aliases
    .addi(reg::A0, reg::ZERO, 100)           // Add immediate with aliases
    .add(reg::A1, reg::A0, reg::SP)          // Register add using aliases
    .beq(reg::A0, reg::A1, 8)                // Branch if equal
    .jal(reg::RA, 0x1000)                    // Jump and link
    .ret()                                   // Return instruction
    .instructions();

// Traditional style
let mut builder3 = Riscv64InstructionBuilder::new();
builder3.csrrw(reg::RA, csr::MSTATUS, reg::SP);
builder3.addi(reg::A0, reg::ZERO, 100);
builder3.ret();
let instructions3 = builder3.instructions();

// Convert instructions to bytes easily
let bytes = instructions.to_bytes();     // All instructions as one byte vector
let size = instructions.total_size();    // Total size in bytes
let count = instructions.len();          // Number of instructions

// Iterate over instructions
for (i, instr) in instructions.iter().enumerate() {
    println!("Instruction {}: {} -> {:?}", i, instr, instr.bytes());
}

// Or access by index
let first_instr = instructions[0];
```

### No-std Usage

For `no_std` environments, disable the default features:

```toml
[dependencies]
jit-assembler = { version = "0.3", default-features = false, features = ["riscv"] }
# Or for AArch64 only:
# jit-assembler = { version = "0.3", default-features = false, features = ["aarch64"] }
# Or for both architectures without std:
# jit-assembler = { version = "0.3", default-features = false, features = ["riscv", "aarch64"] }
```

## Architecture Support

### RISC-V

The RISC-V backend supports:

- **Base integer instruction set (RV64I)**:
  - **Arithmetic**: `add`, `sub`, `addi`, `xor`, `or`, `and`, `slt`, `sltu`
  - **Immediate arithmetic**: `andi`, `ori`, `xori`, `slti`, `sltiu`
  - **Shifts**: `sll`, `srl`, `sra`, `slli`, `srli`, `srai`
  - **Upper immediates**: `lui`, `auipc`
- **M extension (Integer Multiplication and Division)**:
  - **Multiply**: `mul`, `mulh`, `mulhsu`, `mulhu`
  - **Divide**: `div`, `divu`, `rem`, `remu`
- **Memory operations**:
  - **Loads (signed)**: `ld`, `lw`, `lh`, `lb`
  - **Loads (unsigned)**: `lbu`, `lhu`, `lwu`
  - **Stores**: `sd`, `sw`, `sh`, `sb`
- **Control flow**: `jal`, `jalr`, `beq`, `bne`, `blt`, `bge`, `bltu`, `bgeu`
- **CSR instructions**: `csrrw`, `csrrs`, `csrrc`, `csrrwi`, `csrrsi`, `csrrci`
- **CSR pseudo-instructions**: `csrr` (read), `csrw` (write), `csrs` (set), `csrc` (clear), `csrwi`, `csrsi`, `csrci`
- **Privileged instructions**: `sret`, `mret`, `ecall`, `ebreak`, `wfi`
- **Pseudo-instructions**: `ret`, `li`
- **Register usage tracking**: Full tracking support for all instruction types (`register-tracking` feature)

### AArch64

The AArch64 backend supports:

- **Basic arithmetic operations**:
  - **Register operations**: `add`, `sub`, `mul`, `udiv`, `sdiv`
  - **Immediate operations**: `addi`, `subi`
  - **Multiply-subtract operations**: `msub` (multiply-subtract for implementing remainder)
- **Logical operations**:
  - **Register operations**: `and`, `or`, `xor` (EOR)
  - **Move operations**: `mov`
- **Control flow**:
  - **Return**: `ret`, `ret_reg`
- **Extended operations**:
  - **Immediate moves**: `mov_imm` (for larger constants)
  - **Shift operations**: `shl` (left shift using multiply)
- **Register conventions**: Following AAPCS64 (ARM ABI)
  - **Argument/return registers**: X0-X7
  - **Caller-saved temporaries**: X8-X18
  - **Callee-saved registers**: X19-X28
  - **Special registers**: X29 (FP), X30 (LR), X31 (SP/XZR)
- **Register usage tracking**: Full tracking support (`register-tracking` feature)
- **JIT compilation**: Direct function compilation and execution

### Future Architectures

Support for additional architectures is planned:

- x86-64: Intel/AMD 64-bit instruction set

## Examples

### JIT Compiler Integration

```rust
use jit_assembler::riscv::{reg, csr, Riscv64InstructionBuilder};
use jit_assembler::riscv64_asm;

// Simple function generator with macro
fn generate_add_function(a: i16, b: i16) -> Vec<u8> {
    let instructions = riscv64_asm! {
        addi(reg::A0, reg::ZERO, a);       // Load first operand into a0
        addi(reg::A1, reg::ZERO, b);       // Load second operand into a1
        add(reg::A0, reg::A0, reg::A1);    // Add them, result in a0
        ret();                             // Return
    };
    
    // Convert to bytes for execution
    instructions.to_bytes()
}

// Builder pattern for complex logic
fn generate_csr_routine() -> Vec<u8> {
    let mut builder = Riscv64InstructionBuilder::new();
    
    builder
        .csrr(reg::T0, csr::MSTATUS)         // Read current status into t0
        .addi(reg::T1, reg::T0, 1)           // Modify value in t1
        .csrrw(reg::A0, csr::MSTATUS, reg::T1); // Write back, old value in a0
    
    // Convert to executable code
    builder.instructions().to_bytes()
}
```

### AArch64 Usage

```rust
use jit_assembler::aarch64::{reg, Aarch64InstructionBuilder};
use jit_assembler::common::InstructionBuilder;
use jit_assembler::aarch64_asm;

// Macro style (concise and assembly-like)
fn generate_aarch64_add_function_macro() -> Vec<u8> {
    let instructions = aarch64_asm! {
        add(reg::X0, reg::X0, reg::X1);  // Add first two arguments (X0 + X1 -> X0)
        ret();                           // Return
    };
    instructions
}

// Builder pattern style
fn generate_aarch64_add_function() -> Vec<u8> {
    let mut builder = Aarch64InstructionBuilder::new();
    
    builder
        .add(reg::X0, reg::X0, reg::X1)  // Add first two arguments (X0 + X1 -> X0)
        .ret();                          // Return
    
    builder.instructions().to_bytes()
}

// More complex AArch64 example with immediate values (macro style)
fn generate_aarch64_calculation_macro() -> Vec<u8> {
    aarch64_asm! {
        mov_imm(reg::X1, 42);            // Load immediate 42 into X1
        mul(reg::X0, reg::X0, reg::X1);  // Multiply X0 by 42
        addi(reg::X0, reg::X0, 100);     // Add 100 to result
        ret();                           // Return
    }
}

// More complex AArch64 example with immediate values (builder style)
fn generate_aarch64_calculation() -> Vec<u8> {
    let mut builder = Aarch64InstructionBuilder::new();
    
    builder
        .mov_imm(reg::X1, 42)            // Load immediate 42 into X1
        .mul(reg::X0, reg::X0, reg::X1)  // Multiply X0 by 42
        .addi(reg::X0, reg::X0, 100)     // Add 100 to result
        .ret();                          // Return
    
    builder.instructions().to_bytes()
}
```

### JIT Execution (std-only)

Create and execute functions directly at runtime:

```rust
use jit_assembler::riscv64::{reg, Riscv64InstructionBuilder};
use jit_assembler::common::InstructionBuilder;

// Create a JIT function that adds two numbers
let add_func = unsafe {
    Riscv64InstructionBuilder::new()
        .add(reg::A0, reg::A0, reg::A1) // Add first two arguments
        .ret()                          // Return result
        .function::<fn(u64, u64) -> u64>()
}.expect("Failed to create JIT function");

// Call the JIT function naturally - just like a regular function!
let result = add_func.call(10, 20);
assert_eq!(result, 30);

// Create a function that returns a constant
let constant_func = unsafe {
    Riscv64InstructionBuilder::new()
        .addi(reg::A0, reg::ZERO, 42)  // Load 42 into return register
        .ret()                         // Return
        .function::<fn() -> u64>()
}.expect("Failed to create JIT function");

let result = constant_func.call();
assert_eq!(result, 42);
```

**Note**: JIT execution requires the target architecture to match the host architecture. RISC-V code will only execute correctly on RISC-V systems.

**Features**:
- Type-safe function signatures
- Automatic memory management with `jit-allocator2`
- Natural function call syntax: `func.call()`, `func.call(arg)`, `func.call(arg1, arg2)`, etc. - just like regular functions!
- Cross-platform executable memory allocation

## Register Usage Tracking

The `register-tracking` feature enables comprehensive analysis of register usage patterns in your JIT-compiled code, helping with optimization and ABI compliance.

### Enable Register Tracking

Add the feature to your `Cargo.toml`:

```toml
[dependencies]
jit-assembler = { version = "0.3", features = ["register-tracking"] }
```

### Usage Example

```rust
use jit_assembler::riscv64::{reg, Riscv64InstructionBuilder};
use jit_assembler::common::InstructionBuilder;

let mut builder = Riscv64InstructionBuilder::new();

// Build a function that uses various registers
builder
    .add(reg::T0, reg::T1, reg::T2)     // T0 written, T1+T2 read
    .addi(reg::T3, reg::SP, 16)         // T3 written, SP read
    .mul(reg::A0, reg::A1, reg::A2)     // A0 written, A1+A2 read
    .ld(reg::S0, reg::T0, 8)            // S0 written, T0 read
    .sd(reg::SP, reg::S1, -16);         // SP+S1 read

// Analyze register usage
let usage = builder.register_usage();

println!("=== Register Usage Analysis ===");
println!("Total registers used: {}", usage.register_count());
println!("Written registers: {:?}", usage.written_registers());
println!("Read registers: {:?}", usage.read_registers());

// ABI compliance analysis
println!("Caller-saved (written): {:?}", usage.caller_saved_written());
println!("Callee-saved (written): {:?}", usage.callee_saved_written());
println!("Needs stack frame: {}", usage.needs_stack_frame());

// Detailed breakdown
let (caller, callee, special) = usage.count_by_abi_class();
println!("ABI breakdown - Caller: {}, Callee: {}, Special: {}", 
         caller, callee, special);
```

### Key Features

- **Separate tracking**: Distinguishes between written (def) and read (use) registers
- **ABI classification**: Automatically categorizes registers as caller-saved, callee-saved, or special-purpose
- **Stack frame analysis**: Determines if function prologue/epilogue is needed based on callee-saved register usage
- **Comprehensive coverage**: Tracks all RISC-V instruction types (R, I, S, B, U, J, CSR)
- **No-std compatible**: Uses `hashbrown` for no-std environments

### Register ABI Classification (RISC-V)

- **Caller-saved**: T0-T6, A0-A7, RA - Can be freely used without preservation
- **Callee-saved**: S0-S11, SP - Must be saved/restored if modified
- **Special**: X0 (zero), GP, TP - Require careful handling

This information is invaluable for:
- **Register allocation**: Choose optimal registers for variables
- **ABI compliance**: Ensure proper calling convention adherence
- **Performance optimization**: Minimize unnecessary register saves/restores
- **Code analysis**: Understand register pressure and usage patterns

## Merging Instruction Collections

When building complex functions, you may need to combine multiple instruction sequences in arbitrary order. For example, you might want to build the main function body first, then add prologue and epilogue code after determining which registers need to be saved.

### Basic Merging

```rust
use jit_assembler::riscv64::{reg, Riscv64InstructionBuilder};
use jit_assembler::common::InstructionBuilder;

// Build different parts separately
let mut prologue = Riscv64InstructionBuilder::new();
prologue
    .addi(reg::SP, reg::SP, -16)
    .sd(reg::SP, reg::RA, 8);

let mut main_code = Riscv64InstructionBuilder::new();
main_code
    .add(reg::A0, reg::A1, reg::A2)
    .mul(reg::A0, reg::A0, reg::A3);

let mut epilogue = Riscv64InstructionBuilder::new();
epilogue
    .ld(reg::RA, reg::SP, 8)
    .addi(reg::SP, reg::SP, 16)
    .ret();

// Combine them using + operator: prologue + main + epilogue
let combined = prologue.instructions() + main_code.instructions() + epilogue.instructions();

// Or use method chaining
let mut combined = prologue.instructions();
combined += main_code.instructions();
combined += epilogue.instructions();

// Convert to executable code
let bytes = combined.to_bytes();
```

### Merging with Register Tracking

When the `register-tracking` feature is enabled, you can merge instruction collections while preserving register usage information:

```rust
use jit_assembler::riscv64::{reg, Riscv64InstructionBuilder};
use jit_assembler::common::{InstructionBuilder, InstructionCollectionWithUsage};

// Build code in separate builders
let mut prologue = Riscv64InstructionBuilder::new();
prologue.sd(reg::SP, reg::S0, -8);  // Save S0

let mut main_code = Riscv64InstructionBuilder::new();
main_code.add(reg::S0, reg::A0, reg::A1);  // Use S0

let mut epilogue = Riscv64InstructionBuilder::new();
epilogue.ld(reg::S0, reg::SP, -8);  // Restore S0

// Create tracked collections
let prologue_tracked = InstructionCollectionWithUsage::new(
    prologue.instructions(),
    prologue.register_usage().clone()
);
let main_tracked = InstructionCollectionWithUsage::new(
    main_code.instructions(),
    main_code.register_usage().clone()
);
let epilogue_tracked = InstructionCollectionWithUsage::new(
    epilogue.instructions(),
    epilogue.register_usage().clone()
);

// Merge with register usage tracking
let combined = prologue_tracked + main_tracked + epilogue_tracked;

// Access both instructions and register usage
let instructions = combined.instructions();
let usage = combined.register_usage();

println!("Combined {} instructions", instructions.len());
println!("Register usage: {}", usage);
```

See `examples/instruction_collection_merge.rs` for a complete working example.

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.