#define SFMT_C_
#include "test/jemalloc_test.h"
#include "test/SFMT-params.h"
#if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
#if defined(HAVE_ALTIVEC)
union W128_T {
vector unsigned int s;
uint32_t u[4];
};
typedef union W128_T w128_t;
#elif defined(HAVE_SSE2)
union W128_T {
__m128i si;
uint32_t u[4];
};
typedef union W128_T w128_t;
#else
struct W128_T {
uint32_t u[4];
};
typedef struct W128_T w128_t;
#endif
struct sfmt_s {
w128_t sfmt[N];
int idx;
int initialized;
};
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
static inline int idxof(int i);
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
static inline void rshift128(w128_t *out, w128_t const *in, int shift);
static inline void lshift128(w128_t *out, w128_t const *in, int shift);
#endif
static inline void gen_rand_all(sfmt_t *ctx);
static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
static inline uint32_t func1(uint32_t x);
static inline uint32_t func2(uint32_t x);
static void period_certification(sfmt_t *ctx);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
static inline void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
#include "test/SFMT-alti.h"
#elif defined(HAVE_SSE2)
#include "test/SFMT-sse2.h"
#endif
#ifdef ONLY64
static inline int idxof(int i) {
return i ^ 1;
}
#else
static inline int idxof(int i) {
return i;
}
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
#ifdef ONLY64
static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
static inline void gen_rand_all(sfmt_t *ctx) {
int i;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
for (; i < N; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
}
static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < N; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - N; i++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * N - size; j++) {
ctx->sfmt[j] = array[j + size - N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
ctx->sfmt[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
static inline void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
static uint32_t func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
static uint32_t func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
static void period_certification(sfmt_t *ctx) {
int inner = 0;
int i, j;
uint32_t work;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
for (i = 0; i < 4; i++)
inner ^= psfmt32[idxof(i)] & parity[i];
for (i = 16; i > 0; i >>= 1)
inner ^= inner >> i;
inner &= 1;
if (inner == 1) {
return;
}
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
psfmt32[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
const char *get_idstring(void) {
return IDSTR;
}
int get_min_array_size32(void) {
return N32;
}
int get_min_array_size64(void) {
return N64;
}
#ifndef ONLY64
uint32_t gen_rand32(sfmt_t *ctx) {
uint32_t r;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
assert(ctx->initialized);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
r = psfmt32[ctx->idx++];
return r;
}
uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) {
uint32_t ret, above;
above = 0xffffffffU - (0xffffffffU % limit);
while (1) {
ret = gen_rand32(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#endif
uint64_t gen_rand64(sfmt_t *ctx) {
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
uint32_t r1, r2;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
#else
uint64_t r;
uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0];
#endif
assert(ctx->initialized);
assert(ctx->idx % 2 == 0);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
r1 = psfmt32[ctx->idx];
r2 = psfmt32[ctx->idx + 1];
ctx->idx += 2;
return ((uint64_t)r2 << 32) | r1;
#else
r = psfmt64[ctx->idx / 2];
ctx->idx += 2;
return r;
#endif
}
uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) {
uint64_t ret, above;
above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit);
while (1) {
ret = gen_rand64(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#ifndef ONLY64
void fill_array32(sfmt_t *ctx, uint32_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 4 == 0);
assert(size >= N32);
gen_rand_array(ctx, (w128_t *)array, size / 4);
ctx->idx = N32;
}
#endif
void fill_array64(sfmt_t *ctx, uint64_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 2 == 0);
assert(size >= N64);
gen_rand_array(ctx, (w128_t *)array, size / 2);
ctx->idx = N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size /2);
#endif
}
sfmt_t *init_gen_rand(uint32_t seed) {
void *p;
sfmt_t *ctx;
int i;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
psfmt32[idxof(0)] = seed;
for (i = 1; i < N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
void *p;
sfmt_t *ctx;
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = N * 4;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt));
if (key_length + 1 > N32) {
count = key_length + 1;
} else {
count = N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
psfmt32[idxof(mid + lag)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (j = 0; j < N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % N32)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
void fini_gen_rand(sfmt_t *ctx) {
assert(ctx != NULL);
ctx->initialized = 0;
free(ctx);
}