<p align="center">
<img src="./assets/logo.svg" width="1000" alt="ivp">
</p>
<p align="center">
<a href="https://crates.io/crates/ivp">
<img src="https://img.shields.io/crates/v/ivp.svg?style=flat-square" alt="crates.io">
</a>
<a href="https://pypi.org/project/ivp-rs/">
<img src="https://img.shields.io/pypi/v/ivp-rs.svg?style=flat-square" alt="PyPI">
</a>
<a href="https://docs.rs/ivp">
<img src="https://docs.rs/ivp/badge.svg" alt="docs.rs">
</a>
<a href="https://github.com/Ryan-D-Gast/ivp/blob/main/LICENSE">
<img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg">
</a>
</p>
<p align="center">
<strong>
<a href="https://docs.rs/ivp/latest/ivp/">Documentation</a> |
<a href="./examples/">Examples</a> |
<a href="https://github.com/Ryan-D-Gast/ivp">GitHub</a> |
<a href="https://crates.io/crates/ivp">Crates.io</a> |
<a href="https://pypi.org/project/ivp-rs/">PyPI</a>
</strong>
</p>
-----
<p align="center">
<b>A library of numerical methods for solving initial value problems (IVPs)</b><br>
<i>for Rust and Python.</i>
</p>
-----
This library provides a pure Rust implementation of SciPy's `solve_ivp` function with slight modifications to the API to better fit Rust's design patterns. It is also available as a Python package with a SciPy-compatible API.
## Features
Currently implemented solvers:
- **DOP853**: An 8th order Dormand-Prince method with step-size control and dense output.
- **DOPRI5**: A 5th order Dormand-Prince method with step-size control and dense output.
- **RK4**: The classic 4th order Runge-Kutta method with fixed step-size and cubic Hermite interpolation for dense output.
- **RK23**: A 3rd order Runge-Kutta method with 2nd order error estimate for step-size control.
- **Radau**: A 5th order implicit Runge-Kutta method of Radau IIA type with step-size control and dense output.
- **BDF**: A variable-order (1 to 5) Backward Differentiation Formula method for stiff ODEs with adaptive step-size control and dense output.
## Installation
### Rust
```bash
cargo add ivp
```
### Python
```bash
pip install ivp-rs
```
## Example Usage (Python)
```python
from ivp import solve_ivp
import numpy as np
def exponential_decay(t, y):
return -0.5 * y
# Solve the ODE
sol = solve_ivp(exponential_decay, (0, 10), [1.0], method='RK45', rtol=1e-6, atol=1e-9)
print(f"Final time: {sol.t[-1]}")
print(f"Final state: {sol.y[:, -1]}")
```