use std::cmp;
use std::ops::Index;
use std::iter::{Fuse, Peekable};
use std::collections::HashSet;
use std::hash::Hash;
use std::marker::PhantomData;
use size_hint;
macro_rules! clone_fields {
($name:ident, $base:expr, $($field:ident),+) => (
$name {
$(
$field : $base . $field .clone()
),*
}
);
}
#[derive(Clone)]
pub struct Interleave<I, J> {
a: Fuse<I>,
b: Fuse<J>,
flag: bool,
}
pub fn interleave<I, J>(i: I, j: J) -> Interleave<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
where I: IntoIterator,
J: IntoIterator<Item = I::Item>
{
Interleave {
a: i.into_iter().fuse(),
b: j.into_iter().fuse(),
flag: false,
}
}
impl<I, J> Iterator for Interleave<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
self.flag = !self.flag;
if self.flag {
match self.a.next() {
None => self.b.next(),
r => r,
}
} else {
match self.b.next() {
None => self.a.next(),
r => r,
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add(self.a.size_hint(), self.b.size_hint())
}
}
#[derive(Clone)]
pub struct InterleaveShortest<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
it0: I,
it1: J,
phase: bool, }
pub fn interleave_shortest<I, J>(a: I, b: J) -> InterleaveShortest<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
InterleaveShortest {
it0: a,
it1: b,
phase: false,
}
}
impl<I, J> Iterator for InterleaveShortest<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
match self.phase {
false => match self.it0.next() {
None => None,
e => {
self.phase = true;
e
}
},
true => match self.it1.next() {
None => None,
e => {
self.phase = false;
e
}
},
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let bound = |a: usize, b: usize| -> Option<usize> {
use std::cmp::min;
2usize.checked_mul(min(a, b))
.and_then(|lhs| lhs.checked_add(if !self.phase && a > b || (self.phase && a < b) { 1 } else { 0 }))
};
let (l0, u0) = self.it0.size_hint();
let (l1, u1) = self.it1.size_hint();
let lb = bound(l0, l1).unwrap_or(usize::max_value());
let ub = match (u0, u1) {
(None, None) => None,
(Some(u0), None) => Some(u0 * 2 + self.phase as usize),
(None, Some(u1)) => Some(u1 * 2 + !self.phase as usize),
(Some(u0), Some(u1)) => Some(cmp::min(u0, u1) * 2 +
(u0 > u1 && !self.phase ||
(u0 < u1 && self.phase)) as usize),
};
(lb, ub)
}
}
#[derive(Clone)]
pub struct PutBack<I>
where I: Iterator
{
top: Option<I::Item>,
iter: I,
}
pub fn put_back<I>(iterable: I) -> PutBack<I::IntoIter>
where I: IntoIterator
{
PutBack {
top: None,
iter: iterable.into_iter(),
}
}
impl<I> PutBack<I>
where I: Iterator
{
#[doc(hidden)]
#[deprecated(note = "replaced by put_back")]
#[inline]
pub fn new(it: I) -> Self {
PutBack {
top: None,
iter: it,
}
}
pub fn with_value(mut self, value: I::Item) -> Self {
self.put_back(value);
self
}
#[inline]
pub fn into_parts(self) -> (Option<I::Item>, I) {
let PutBack{top, iter} = self;
(top, iter)
}
#[inline]
pub fn put_back(&mut self, x: I::Item) {
self.top = Some(x)
}
}
impl<I> Iterator for PutBack<I>
where I: Iterator
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
match self.top {
None => self.iter.next(),
ref mut some => some.take(),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.top.is_some() as usize)
}
fn all<G>(&mut self, mut f: G) -> bool
where G: FnMut(Self::Item) -> bool
{
if let Some(elt) = self.top.take() {
if !f(elt) {
return false;
}
}
self.iter.all(f)
}
fn fold<Acc, G>(mut self, init: Acc, mut f: G) -> Acc
where G: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
if let Some(elt) = self.top.take() {
accum = f(accum, elt);
}
self.iter.fold(accum, f)
}
}
pub struct PutBackN<I: Iterator> {
top: Vec<I::Item>,
iter: I,
}
pub fn put_back_n<I>(iterable: I) -> PutBackN<I::IntoIter>
where I: IntoIterator
{
PutBackN {
top: Vec::new(),
iter: iterable.into_iter(),
}
}
impl<I: Iterator> PutBackN<I> {
#[doc(hidden)]
#[deprecated(note = "replaced by put_back_n")]
#[inline]
pub fn new(it: I) -> Self {
put_back_n(it)
}
#[inline]
pub fn put_back(&mut self, x: I::Item) {
self.top.push(x);
}
}
impl<I: Iterator> Iterator for PutBackN<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
if self.top.is_empty() {
self.iter.next()
} else {
self.top.pop()
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.top.len())
}
}
impl<I: Iterator> Clone for PutBackN<I>
where I: Clone,
I::Item: Clone
{
fn clone(&self) -> Self {
clone_fields!(PutBackN, self, top, iter)
}
}
#[derive(Clone)]
pub struct Product<I, J>
where I: Iterator
{
a: I,
a_cur: Option<I::Item>,
b: J,
b_orig: J,
}
pub fn cartesian_product<I, J>(mut i: I, j: J) -> Product<I, J>
where I: Iterator,
J: Clone + Iterator,
I::Item: Clone
{
Product {
a_cur: i.next(),
a: i,
b: j.clone(),
b_orig: j,
}
}
impl<I, J> Iterator for Product<I, J>
where I: Iterator,
J: Clone + Iterator,
I::Item: Clone
{
type Item = (I::Item, J::Item);
fn next(&mut self) -> Option<(I::Item, J::Item)> {
let elt_b = match self.b.next() {
None => {
self.b = self.b_orig.clone();
match self.b.next() {
None => return None,
Some(x) => {
self.a_cur = self.a.next();
x
}
}
}
Some(x) => x
};
match self.a_cur {
None => None,
Some(ref a) => {
Some((a.clone(), elt_b))
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let has_cur = self.a_cur.is_some() as usize;
let (b, _) = self.b.size_hint();
size_hint::add_scalar(
size_hint::mul(self.a.size_hint(), self.b_orig.size_hint()),
b * has_cur)
}
}
#[derive(Clone)]
pub struct Batching<I, F> {
f: F,
iter: I,
}
pub fn batching<I, F>(iter: I, f: F) -> Batching<I, F> {
Batching { f: f, iter: iter }
}
impl<B, F, I> Iterator for Batching<I, F>
where I: Iterator,
F: FnMut(&mut I) -> Option<B>
{
type Item = B;
#[inline]
fn next(&mut self) -> Option<B> {
(self.f)(&mut self.iter)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(0, None)
}
}
#[derive(Clone)]
pub struct Step<I> {
iter: Fuse<I>,
skip: usize,
}
pub fn step<I>(iter: I, step: usize) -> Step<I>
where I: Iterator
{
assert!(step != 0);
Step {
iter: iter.fuse(),
skip: step - 1,
}
}
impl<I> Iterator for Step<I>
where I: Iterator
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
let elt = self.iter.next();
if self.skip > 0 {
self.iter.nth(self.skip - 1);
}
elt
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, high) = self.iter.size_hint();
let div = |x: usize| {
if x == 0 {
0
} else {
1 + (x - 1) / (self.skip + 1)
}
};
(div(low), high.map(div))
}
}
impl<I> ExactSizeIterator for Step<I>
where I: ExactSizeIterator
{}
struct MergeCore<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
a: Peekable<I>,
b: Peekable<J>,
fused: Option<bool>,
}
impl<I, J> Clone for MergeCore<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>,
Peekable<I>: Clone,
Peekable<J>: Clone
{
fn clone(&self) -> Self {
clone_fields!(MergeCore, self, a, b, fused)
}
}
impl<I, J> MergeCore<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
fn next_with<F>(&mut self, mut less_than: F) -> Option<I::Item>
where F: FnMut(&I::Item, &I::Item) -> bool
{
let less_than = match self.fused {
Some(lt) => lt,
None => match (self.a.peek(), self.b.peek()) {
(Some(a), Some(b)) => less_than(a, b),
(Some(_), None) => {
self.fused = Some(true);
true
}
(None, Some(_)) => {
self.fused = Some(false);
false
}
(None, None) => return None,
}
};
if less_than {
self.a.next()
} else {
self.b.next()
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add(self.a.size_hint(), self.b.size_hint())
}
}
pub struct Merge<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>
{
merge: MergeCore<I, J>,
}
impl<I, J> Clone for Merge<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>,
Peekable<I>: Clone,
Peekable<J>: Clone
{
fn clone(&self) -> Self {
clone_fields!(Merge, self, merge)
}
}
pub fn merge<I, J>(i: I, j: J) -> Merge<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
where I: IntoIterator,
J: IntoIterator<Item = I::Item>,
I::Item: PartialOrd
{
Merge {
merge: MergeCore {
a: i.into_iter().peekable(),
b: j.into_iter().peekable(),
fused: None,
},
}
}
impl<I, J> Iterator for Merge<I, J>
where I: Iterator,
J: Iterator<Item = I::Item>,
I::Item: PartialOrd
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
self.merge.next_with(|a, b| a <= b)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.merge.size_hint()
}
}
pub struct MergeBy<I, J, F>
where I: Iterator,
J: Iterator<Item = I::Item>
{
merge: MergeCore<I, J>,
cmp: F,
}
pub fn merge_by_new<I, J, F>(a: I, b: J, cmp: F) -> MergeBy<I, J, F>
where I: Iterator,
J: Iterator<Item = I::Item>
{
MergeBy {
merge: MergeCore {
a: a.peekable(),
b: b.peekable(),
fused: None,
},
cmp: cmp,
}
}
impl<I, J, F> Clone for MergeBy<I, J, F>
where I: Iterator,
J: Iterator<Item = I::Item>,
Peekable<I>: Clone,
Peekable<J>: Clone,
F: Clone
{
fn clone(&self) -> Self {
clone_fields!(MergeBy, self, merge, cmp)
}
}
impl<I, J, F> Iterator for MergeBy<I, J, F>
where I: Iterator,
J: Iterator<Item = I::Item>,
F: FnMut(&I::Item, &I::Item) -> bool
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
self.merge.next_with(&mut self.cmp)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.merge.size_hint()
}
}
#[derive(Clone)]
pub struct MultiPeek<I>
where I: Iterator
{
iter: Fuse<I>,
buf: Vec<I::Item>,
index: usize,
}
pub fn multipeek<I>(iterable: I) -> MultiPeek<I::IntoIter>
where I: IntoIterator
{
MultiPeek {
iter: iterable.into_iter().fuse(),
buf: Vec::new(),
index: 0,
}
}
impl<I: Iterator> MultiPeek<I> {
pub fn peek(&mut self) -> Option<&I::Item> {
let ret = if self.index < self.buf.len() {
Some(&self.buf[self.index])
} else {
match self.iter.next() {
Some(x) => {
self.buf.push(x);
Some(&self.buf[self.index])
}
None => return None,
}
};
self.index += 1;
ret
}
}
impl<I> Iterator for MultiPeek<I>
where I: Iterator
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
self.index = 0;
if self.buf.is_empty() {
self.iter.next()
} else {
Some(self.buf.remove(0))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
}
}
impl<I> ExactSizeIterator for MultiPeek<I>
where I: ExactSizeIterator
{}
#[derive(Clone)]
pub struct CoalesceCore<I>
where I: Iterator
{
iter: I,
last: Option<I::Item>,
}
impl<I> CoalesceCore<I>
where I: Iterator
{
fn next_with<F>(&mut self, mut f: F) -> Option<I::Item>
where F: FnMut(I::Item, I::Item) -> Result<I::Item, (I::Item, I::Item)>
{
let mut last = match self.last.take() {
None => return None,
Some(x) => x,
};
for next in &mut self.iter {
match f(last, next) {
Ok(joined) => last = joined,
Err((last_, next_)) => {
self.last = Some(next_);
return Some(last_);
}
}
}
Some(last)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = size_hint::add_scalar(self.iter.size_hint(),
self.last.is_some() as usize);
((low > 0) as usize, hi)
}
}
pub struct Coalesce<I, F>
where I: Iterator
{
iter: CoalesceCore<I>,
f: F,
}
impl<I: Clone, F: Clone> Clone for Coalesce<I, F>
where I: Iterator,
I::Item: Clone
{
fn clone(&self) -> Self {
clone_fields!(Coalesce, self, iter, f)
}
}
pub fn coalesce<I, F>(mut iter: I, f: F) -> Coalesce<I, F>
where I: Iterator
{
Coalesce {
iter: CoalesceCore {
last: iter.next(),
iter: iter,
},
f: f,
}
}
impl<I, F> Iterator for Coalesce<I, F>
where I: Iterator,
F: FnMut(I::Item, I::Item) -> Result<I::Item, (I::Item, I::Item)>
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
self.iter.next_with(&mut self.f)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
pub struct Dedup<I>
where I: Iterator
{
iter: CoalesceCore<I>,
}
impl<I: Clone> Clone for Dedup<I>
where I: Iterator,
I::Item: Clone
{
fn clone(&self) -> Self {
clone_fields!(Dedup, self, iter)
}
}
pub fn dedup<I>(mut iter: I) -> Dedup<I>
where I: Iterator
{
Dedup {
iter: CoalesceCore {
last: iter.next(),
iter: iter,
},
}
}
impl<I> Iterator for Dedup<I>
where I: Iterator,
I::Item: PartialEq
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
self.iter.next_with(|x, y| {
if x == y { Ok(x) } else { Err((x, y)) }
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
pub struct TakeWhileRef<'a, I: 'a, F> {
iter: &'a mut I,
f: F,
}
pub fn take_while_ref<I, F>(iter: &mut I, f: F) -> TakeWhileRef<I, F>
where I: Iterator + Clone
{
TakeWhileRef { iter: iter, f: f }
}
impl<'a, I, F> Iterator for TakeWhileRef<'a, I, F>
where I: Iterator + Clone,
F: FnMut(&I::Item) -> bool
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
let old = self.iter.clone();
match self.iter.next() {
None => None,
Some(elt) => {
if (self.f)(&elt) {
Some(elt)
} else {
*self.iter = old;
None
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, hi) = self.iter.size_hint();
(0, hi)
}
}
#[derive(Clone)]
pub struct WhileSome<I> {
iter: I,
}
pub fn while_some<I>(iter: I) -> WhileSome<I> {
WhileSome { iter: iter }
}
impl<I, A> Iterator for WhileSome<I>
where I: Iterator<Item = Option<A>>
{
type Item = A;
fn next(&mut self) -> Option<A> {
match self.iter.next() {
None | Some(None) => None,
Some(elt) => elt,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let sh = self.iter.size_hint();
(0, sh.1)
}
}
pub struct TupleCombinations<I, T>
where I: Iterator,
T: HasCombination<I>
{
iter: T::Combination,
_mi: PhantomData<I>,
_mt: PhantomData<T>
}
pub trait HasCombination<I>: Sized {
type Combination: From<I> + Iterator<Item = Self>;
}
pub fn tuple_combinations<T, I>(iter: I) -> TupleCombinations<I, T>
where I: Iterator + Clone,
I::Item: Clone,
T: HasCombination<I>,
{
TupleCombinations {
iter: T::Combination::from(iter),
_mi: PhantomData,
_mt: PhantomData,
}
}
impl<I, T> Iterator for TupleCombinations<I, T>
where I: Iterator,
T: HasCombination<I>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub struct Tuple1Combination<I> {
iter: I,
}
impl<I> From<I> for Tuple1Combination<I> {
fn from(iter: I) -> Self {
Tuple1Combination { iter: iter }
}
}
impl<I: Iterator> Iterator for Tuple1Combination<I> {
type Item = (I::Item,);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|x| (x,))
}
}
impl<I: Iterator> HasCombination<I> for (I::Item,) {
type Combination = Tuple1Combination<I>;
}
macro_rules! impl_tuple_combination {
($C:ident $P:ident ; $A:ident, $($I:ident),* ; $($X:ident)*) => (
pub struct $C<I: Iterator> {
item: Option<I::Item>,
iter: I,
c: $P<I>,
}
impl<I: Iterator + Clone> From<I> for $C<I> {
fn from(mut iter: I) -> Self {
$C {
item: iter.next(),
iter: iter.clone(),
c: $P::from(iter),
}
}
}
impl<I: Iterator + Clone> From<I> for $C<Fuse<I>> {
fn from(iter: I) -> Self {
let mut iter = iter.fuse();
$C {
item: iter.next(),
iter: iter.clone(),
c: $P::from(iter),
}
}
}
impl<I, $A> Iterator for $C<I>
where I: Iterator<Item = $A> + Clone,
I::Item: Clone
{
type Item = ($($I),*);
fn next(&mut self) -> Option<Self::Item> {
if let Some(($($X),*,)) = self.c.next() {
let z = self.item.clone().unwrap();
Some((z, $($X),*))
} else {
self.item = self.iter.next();
self.item.clone().and_then(|z| {
self.c = $P::from(self.iter.clone());
self.c.next().map(|($($X),*,)| (z, $($X),*))
})
}
}
}
impl<I, $A> HasCombination<I> for ($($I),*)
where I: Iterator<Item = $A> + Clone,
I::Item: Clone
{
type Combination = $C<Fuse<I>>;
}
)
}
impl_tuple_combination!(Tuple2Combination Tuple1Combination ; A, A, A ; a);
impl_tuple_combination!(Tuple3Combination Tuple2Combination ; A, A, A, A ; a b);
impl_tuple_combination!(Tuple4Combination Tuple3Combination ; A, A, A, A, A; a b c);
struct LazyBuffer<I: Iterator> {
it: I,
done: bool,
buffer: Vec<I::Item>,
}
impl<I> LazyBuffer<I>
where I: Iterator
{
pub fn new(it: I) -> LazyBuffer<I> {
let mut it = it;
let mut buffer = Vec::new();
let done;
if let Some(first) = it.next() {
buffer.push(first);
done = false;
} else {
done = true;
}
LazyBuffer {
it: it,
done: done,
buffer: buffer,
}
}
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn is_done(&self) -> bool {
self.done
}
pub fn get_next(&mut self) -> bool {
if self.done {
return false;
}
let next_item = self.it.next();
match next_item {
Some(x) => {
self.buffer.push(x);
true
}
None => {
self.done = true;
false
}
}
}
}
impl<I> Index<usize> for LazyBuffer<I>
where I: Iterator,
I::Item: Sized
{
type Output = I::Item;
fn index<'b>(&'b self, _index: usize) -> &'b I::Item {
self.buffer.index(_index)
}
}
pub struct Combinations<I: Iterator> {
n: usize,
indices: Vec<usize>,
pool: LazyBuffer<I>,
first: bool,
}
pub fn combinations<I>(iter: I, n: usize) -> Combinations<I>
where I: Iterator
{
assert!(n != 0);
let mut indices: Vec<usize> = Vec::with_capacity(n);
for i in 0..n {
indices.push(i);
}
let mut pool: LazyBuffer<I> = LazyBuffer::new(iter);
for _ in 0..n {
if !pool.get_next() {
break;
}
}
Combinations {
n: n,
indices: indices,
pool: pool,
first: true,
}
}
impl<I> Iterator for Combinations<I>
where I: Iterator,
I::Item: Clone
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
let mut pool_len = self.pool.len();
if self.pool.is_done() {
if pool_len == 0 || self.n > pool_len {
return None;
}
}
if self.first {
self.first = false;
} else {
let mut i: usize = self.n - 1;
if self.indices[i] == pool_len - 1 && !self.pool.is_done() {
if self.pool.get_next() {
pool_len += 1;
}
}
while self.indices[i] == i + pool_len - self.n {
if i > 0 {
i -= 1;
} else {
return None;
}
}
self.indices[i] += 1;
let mut j = i + 1;
while j < self.n {
self.indices[j] = self.indices[j - 1] + 1;
j += 1;
}
}
let mut result = Vec::with_capacity(self.n);
for i in self.indices.iter() {
result.push(self.pool[*i].clone());
}
Some(result)
}
}
#[derive(Clone)]
pub struct UniqueBy<I: Iterator, V, F> {
iter: I,
used: HashSet<V>,
f: F,
}
pub fn unique_by<I, V, F>(iter: I, f: F) -> UniqueBy<I, V, F>
where V: Eq + Hash,
F: FnMut(&I::Item) -> V,
I: Iterator,
{
UniqueBy {
iter: iter,
used: HashSet::new(),
f: f,
}
}
impl<I, V, F> Iterator for UniqueBy<I, V, F>
where I: Iterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
loop {
match self.iter.next() {
None => return None,
Some(v) => {
let key = (self.f)(&v);
if self.used.insert(key) {
return Some(v);
}
}
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.size_hint();
((low > 0 && self.used.is_empty()) as usize, hi)
}
}
impl<I> Iterator for Unique<I>
where I: Iterator,
I::Item: Eq + Hash + Clone
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
loop {
match self.iter.iter.next() {
None => return None,
Some(v) => {
if !self.iter.used.contains(&v) {
self.iter.used.insert(v.clone());
return Some(v);
}
}
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.iter.size_hint();
((low > 0 && self.iter.used.is_empty()) as usize, hi)
}
}
#[derive(Clone)]
pub struct Unique<I: Iterator> {
iter: UniqueBy<I, I::Item, ()>,
}
pub fn unique<I>(iter: I) -> Unique<I>
where I: Iterator,
I::Item: Eq + Hash,
{
Unique {
iter: UniqueBy {
iter: iter,
used: HashSet::new(),
f: (),
}
}
}
#[derive(Clone)]
pub struct Flatten<I, J> {
iter: I,
front: Option<J>,
back: Option<J>,
}
pub fn flatten<I, J>(iter: I) -> Flatten<I, J> {
Flatten {
iter: iter,
front: None,
back: None,
}
}
impl<I, J> Iterator for Flatten<I, J>
where I: Iterator,
I::Item: IntoIterator<IntoIter=J, Item=J::Item>,
J: Iterator,
{
type Item = J::Item;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(ref mut f) = self.front {
match f.next() {
elt @ Some(_) => return elt,
None => { }
}
}
if let Some(next_front) = self.iter.next() {
self.front = Some(next_front.into_iter());
} else {
break;
}
}
if let Some(ref mut b) = self.back {
match b.next() {
elt @ Some(_) => return elt,
None => { }
}
}
None
}
fn fold<Acc, G>(self, init: Acc, mut f: G) -> Acc
where G: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
if let Some(iter) = self.front {
accum = iter.fold(accum, &mut f);
}
for iter in self.iter {
accum = iter.into_iter().fold(accum, &mut f);
}
if let Some(iter) = self.back {
accum = iter.fold(accum, &mut f);
}
accum
}
}
impl<I, J> DoubleEndedIterator for Flatten<I, J>
where I: DoubleEndedIterator,
I::Item: IntoIterator<IntoIter=J, Item=J::Item>,
J: DoubleEndedIterator,
{
fn next_back(&mut self) -> Option<Self::Item> {
loop {
if let Some(ref mut b) = self.back {
match b.next_back() {
elt @ Some(_) => return elt,
None => { }
}
}
if let Some(next_back) = self.iter.next_back() {
self.back = Some(next_back.into_iter());
} else {
break;
}
}
if let Some(ref mut f) = self.front {
match f.next_back() {
elt @ Some(_) => return elt,
None => { }
}
}
None
}
}