1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! Iterators that are sources (produce elements from parameters,
//! not from another iterator).
/// An iterator source that produces elements indefinitely by calling
/// a given closure.
///
/// Iterator element type is the return type of the closure.
///
/// ```
/// use itertools::RepeatCall;
///
/// itertools::assert_equal(
/// RepeatCall::new(|| "A".to_string()).take(5),
/// vec!["A", "A", "A", "A", "A"]
/// );
///
/// let mut x = 1;
/// itertools::assert_equal(
/// RepeatCall::new(|| { x = -x; x }).take(5),
/// vec![-1, 1, -1, 1, -1]
/// );
/// ```
/// `Unfold` is a general iterator builder: it has a mutable state value,
/// and a closure with access to the state that produces the next value.
///
/// This more or less equivalent to a regular struct with an `Iterator`
/// implementation, and is useful for one-off iterators.
///
/// ```
/// // an iterator that yields sequential Fibonacci numbers,
/// // and stops at the maximum representable value.
///
/// use itertools::Unfold;
///
/// let mut fibonacci = Unfold::new((1_u32, 1_u32), |state| {
/// let (ref mut x1, ref mut x2) = *state;
///
/// // Attempt to get the next Fibonacci number
/// let next = x1.saturating_add(*x2);
///
/// // Shift left: ret <- x1 <- x2 <- next
/// let ret = *x1;
/// *x1 = *x2;
/// *x2 = next;
///
/// // If addition has saturated at the maximum, we are finished
/// if ret == *x1 && ret > 1 {
/// return None;
/// }
///
/// Some(ret)
/// });
///
/// itertools::assert_equal(fibonacci.by_ref().take(8),
/// vec![1, 1, 2, 3, 5, 8, 13, 21]);
/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
/// ```