irox-stats 0.3.5

Various mathematical and statistics utilities
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
// SPDX-License-Identifier: MIT
// Copyright 2025 IROX Contributors
//

use crate::sampling::{IntSample64, Sample64, StrSample64};
use crate::streams::{
    AddingDecoder, CompressStream, Decoder, DeltaStream, F64ToU64Stream, I64ToU64Stream,
    InflateStream, Stream, StreamStageStats, U64ToF64Decoder, U64ToI64Decoder, ZigZagDecoder,
    ZigZagStream,
};
use alloc::sync::Arc;
use core::hash::Hash;
use irox_bits::{
    Bits, BitsError, BitsErrorKind, BitsWrapper, Error, MutBits, ReadFromBEBits,
    SharedCountingBits, SharedROCounter, WriteToBEBits,
};
use irox_time::Time64;
use irox_tools::buf::{Buffer, RoundBuffer};
use irox_tools::codec::{GroupVarintCodeDecoder, GroupVarintCodeEncoder};
use irox_tools::map::OrderedHashMap;
use irox_tools::read::{MultiStreamReader, MultiStreamWriter, StreamWriter};
use irox_tools::StrWrapper;
use std::path::Path;

macro_rules! new_bdc {
    ($writer:ident) => {
        Box::new(CompressStream::new(BitsWrapper::Owned(
            $writer.new_stream(),
        )))
    };
}

///
/// Breaks a [`u64`] into the 8 component bytes, and then compresses them individually.
pub struct EightByteStream<'a> {
    pub(crate) fb1: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb2: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb3: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb4: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb5: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb6: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb7: Box<CompressStream<'a, StreamWriter>>,
    pub(crate) fb8: Box<CompressStream<'a, StreamWriter>>,
}
impl EightByteStream<'_> {
    pub fn new(writer: &Arc<MultiStreamWriter>) -> Self {
        Self {
            fb1: new_bdc!(writer),
            fb2: new_bdc!(writer),
            fb3: new_bdc!(writer),
            fb4: new_bdc!(writer),
            fb5: new_bdc!(writer),
            fb6: new_bdc!(writer),
            fb7: new_bdc!(writer),
            fb8: new_bdc!(writer),
        }
    }

    pub fn written(&self) -> u64 {
        let mut out = 0u64;
        out = out.wrapping_add(self.fb1.written());
        out = out.wrapping_add(self.fb2.written());
        out = out.wrapping_add(self.fb3.written());
        out = out.wrapping_add(self.fb4.written());
        out = out.wrapping_add(self.fb5.written());
        out = out.wrapping_add(self.fb6.written());
        out = out.wrapping_add(self.fb7.written());
        out = out.wrapping_add(self.fb8.written());
        out
    }

    pub fn written_stats(&self) -> [u64; 8] {
        [
            self.fb1.written(),
            self.fb2.written(),
            self.fb3.written(),
            self.fb4.written(),
            self.fb5.written(),
            self.fb6.written(),
            self.fb7.written(),
            self.fb8.written(),
        ]
    }
}
impl Stream<u64> for EightByteStream<'_> {
    fn write_value(&mut self, v: u64) -> Result<usize, Error> {
        let [a, b, c, d, e, f, g, h] = v.to_be_bytes();
        self.fb1.write_value(a as i8)?;
        self.fb2.write_value(b as i8)?;
        self.fb3.write_value(c as i8)?;
        self.fb4.write_value(d as i8)?;
        self.fb5.write_value(e as i8)?;
        self.fb6.write_value(f as i8)?;
        self.fb7.write_value(g as i8)?;
        self.fb8.write_value(h as i8)?;
        Ok(8)
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.fb1.flush()?;
        self.fb2.flush()?;
        self.fb3.flush()?;
        self.fb4.flush()?;
        self.fb5.flush()?;
        self.fb6.flush()?;
        self.fb7.flush()?;
        self.fb8.flush()?;
        Ok(())
    }

    fn written_stats(&self) -> String {
        format!("{:?} = {}", self.written_stats(), self.written())
    }
}
///
/// Time Series Data File using the SPDP encoding scheme
pub struct SPDPWriter<'a> {
    writer: Arc<MultiStreamWriter>,
    time_stream: EightByteStream<'a>,
    float_stream: EightByteStream<'a>,
    semi_last_value: f64,
    last_value: f64,
}

///
/// The rot54 operation is intended to exploit the ordered entropy of a float mantissa.  Most of the
/// zero values from the mantissa will be in the LSBs.  Rot54 is therefor:
///
/// Float: `0xEEE_MMMMMMMMMMMMMu64 = 0x00_0ABBCCDDEEFFGG`
/// Rot54: `0x00GGFFEEDDCCBB0A`
///
/// A value like `0.25f64` is encoded as `0x3FD0000000000000` if you call [`f64::to_bits`].  The rot54
/// operation rotates it to `0xD03F` - which usually encodes much nicer.
pub fn rot54(value: u64) -> u64 {
    let [_, b, c, d, e, f, g, h] = value.to_be_bytes();
    irox_bits::FromBEBytes::from_be_bytes([0, h, g, f, e, d, c, b])
}

impl SPDPWriter<'_> {
    pub fn new<T: AsRef<Path>>(path: T) -> Result<Self, Error> {
        let writer = MultiStreamWriter::new(path)?;
        let time_stream = EightByteStream::new(&writer);
        let float_stream = EightByteStream::new(&writer);

        Ok(SPDPWriter {
            writer,
            time_stream,
            float_stream,
            last_value: f64::default(),
            semi_last_value: f64::default(),
        })
    }

    pub fn write_sample(&mut self, sample: &Sample64) -> Result<(), Error> {
        let Sample64 { time, value } = sample;
        self.time_stream.write_value(time.as_u64())?;

        let delta = value; // - self.semi_last_value;
        self.semi_last_value = self.last_value;
        self.last_value = *value;
        self.float_stream.write_value(delta.to_bits())?;
        Ok(())
    }
    pub fn flush(&mut self) -> Result<(), Error> {
        self.time_stream.flush()?;
        self.float_stream.flush()?;
        Ok(())
    }

    pub fn len(&self) -> Result<u64, Error> {
        self.writer.len()
    }
    pub fn is_empty(&self) -> Result<bool, Error> {
        Ok(self.len()? == 0)
    }
}
///
/// Basic stream to [`rot54`] the input sample.
pub struct Rot54Stream {
    writer: Box<dyn Stream<u64>>,
}
impl Rot54Stream {
    pub fn new(writer: Box<dyn Stream<u64>>) -> Self {
        Self { writer }
    }
}
impl Stream<u64> for Rot54Stream {
    fn write_value(&mut self, value: u64) -> Result<usize, Error> {
        let v = rot54(value);
        self.writer.write_value(v)
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.writer.flush()
    }
}

///
/// Basic stream to split a [`f64`] into it's exponent and mantissa
pub struct FloatSplitter {
    mantissa_writer: Box<dyn Stream<u64>>,
    exponent_writer: Box<dyn Stream<u64>>,
}
impl FloatSplitter {
    pub fn new(
        mantissa_writer: Box<dyn Stream<u64>>,
        exponent_writer: Box<dyn Stream<u64>>,
    ) -> Self {
        Self {
            mantissa_writer,
            exponent_writer,
        }
    }
}
impl Stream<f64> for FloatSplitter {
    fn write_value(&mut self, value: f64) -> Result<usize, Error> {
        let bits = value.to_bits();
        let exponent = bits >> 52;
        let mantissa = bits & 0xFFFFFFFFFFFFF;
        self.mantissa_writer.write_value(mantissa)?;
        self.exponent_writer.write_value(exponent)?;
        Ok(8)
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.mantissa_writer.flush()?;
        self.exponent_writer.flush()?;
        Ok(())
    }
}

///
/// Stream to collect values into groups of 4 and then run them through a [`GroupVarintCodeEncoder`]
pub struct GroupCodingStream<'a, T: Hash + Eq + Sized + Default + Clone + WriteToBEBits, B: MutBits>
{
    buf: RoundBuffer<4, T>,
    inner: GroupVarintCodeEncoder<'a, T, B>,
}
impl<'a, T: Hash + Eq + Default + Sized + Default + Clone + WriteToBEBits, B: MutBits>
    GroupCodingStream<'a, T, B>
{
    pub fn new(inner: BitsWrapper<'a, B>) -> Self {
        Self {
            buf: RoundBuffer::new(),
            inner: GroupVarintCodeEncoder::new(inner),
        }
    }
    pub fn counter(&self) -> SharedROCounter {
        self.inner.counter()
    }
}
impl<T: Hash + Eq + Sized + Default + Clone + WriteToBEBits, B: MutBits> Stream<T>
    for GroupCodingStream<'_, T, B>
{
    fn write_value(&mut self, value: T) -> Result<usize, Error> {
        let _ = self.buf.push_back(value);
        if self.buf.is_full() {
            let a = self.buf.pop_front().unwrap_or_default();
            let b = self.buf.pop_front().unwrap_or_default();
            let c = self.buf.pop_front().unwrap_or_default();
            let d = self.buf.pop_front().unwrap_or_default();
            self.inner.encode_4(&[a, b, c, d])
        } else {
            Ok(0)
        }
    }

    fn flush(&mut self) -> Result<(), Error> {
        self.inner.flush()
    }
}
impl<T: Hash + Eq + Sized + Default + Clone + WriteToBEBits, B: MutBits> Drop
    for GroupCodingStream<'_, T, B>
{
    fn drop(&mut self) {
        let len = self.buf.len();
        if len > 0 {
            let needed = 4 - len;
            for _ in 0..needed {
                let _ = self.write_value(T::default());
            }
        }
        let _ = self.inner.flush();
    }
}

pub struct GroupDecodingStream<'a, T: Hash + Eq + Default, B: Bits> {
    inner: GroupVarintCodeDecoder<'a, T, B>,
    buf: RoundBuffer<4, T>,
}
impl<'a, T: Hash + Eq + Default + ReadFromBEBits + Clone, B: Bits> GroupDecodingStream<'a, T, B> {
    pub fn new(inner: BitsWrapper<'a, B>) -> Self {
        Self {
            inner: GroupVarintCodeDecoder::new(inner),
            buf: RoundBuffer::new(),
        }
    }
}
impl<T: Hash + Eq + Default + ReadFromBEBits + Clone, B: Bits> Decoder<T>
    for GroupDecodingStream<'_, T, B>
{
    fn next(&mut self) -> Result<Option<T>, Error> {
        if self.buf.is_empty() {
            let Some(val) = self.inner.decode_4()? else {
                return Ok(None);
            };
            for v in val {
                let _ = self.buf.push_back(v.clone());
            }
        }
        Ok(self.buf.pop_front())
    }
}

///
/// Coded Time Series Sample File consists of 2 streams: a data stream and a time stream backed by a [`MultiStreamWriter`]
///
/// Data stream:
/// 1. Convert [`f64`] to [`u64`] bit-for-bit
/// 2. Run it through a [`irox_tools::codec::CodeDictionary`] to map the observed values into unique [`u32`] codes
/// 3. Group those codes into blocks of 4 using [`GroupCodingStream`] and then encode into Varint-GB using [`GroupVarintCodeEncoder`]
/// 4. Deflate/GZ the resultant byte stream.
///
/// It is assumed that the data stream samples come from something approximating a A2D sensor with a fixed number of detection bits
/// and as such, most of the data will be fairly similar, even if very noisy when it jumps around.
///
/// Time stream:
/// 0. Convert the time value into a [`u64`] (external)
/// 1. Run it through a [`DeltaStream`] to encode the first value, and then output the `N-1` difference
/// 2. Run it through the same 2, 3, 4 processing as the data stream.
///
/// It is assumed that the time series will be periodically sampled and atomically increasing
pub struct CodedTimeSeriesWriter<'a> {
    float_stream: Box<dyn Stream<f64>>,
    time_stream: Box<dyn Stream<u64>>,
    int_stream: Box<dyn Stream<u64>>,
    str_stream: Box<dyn Stream<StrWrapper<'a>> + 'a>,
    meta_stream: Box<dyn Stream<Arc<String>> + 'a>,
    stats: StreamStageStats,
}

impl<'a> CodedTimeSeriesWriter<'a> {
    pub fn new<T: AsRef<Path>>(path: T) -> Result<Self, Error> {
        let mut stats = StreamStageStats::default();

        let writer = MultiStreamWriter::new(path)?;

        let meta_stream = {
            let meta_stream = writer.new_stream();
            let meta_stream = CompressStream::new(BitsWrapper::Owned(meta_stream));
            Box::new(meta_stream)
        };

        let time_stream = {
            let time_stream = writer.new_stream();
            let time_stream = SharedCountingBits::new(BitsWrapper::Owned(time_stream));
            stats.stage_counting("1.1.time_gz", time_stream.get_count());
            let time_stream = CompressStream::new(BitsWrapper::Owned(time_stream));
            let time_stream = SharedCountingBits::new(BitsWrapper::Owned(time_stream));
            stats.stage_counting("1.2.time_vgb", time_stream.get_count());
            let time_stream = GroupCodingStream::<u64, _>::new(BitsWrapper::Owned(time_stream));
            stats.stage_counting("1.3.time_codes", time_stream.counter());
            let time_stream = ZigZagStream::new(Box::new(time_stream));
            let time_stream = DeltaStream::<i64>::new(Box::new(time_stream));
            Box::new(time_stream)
        };

        let float_stream = {
            let float_stream = writer.new_stream();
            let float_stream = SharedCountingBits::new(BitsWrapper::Owned(float_stream));
            stats.stage_counting("2.1.float_gz", float_stream.get_count());
            let float_stream = CompressStream::new(BitsWrapper::Owned(float_stream));
            let float_stream = SharedCountingBits::new(BitsWrapper::Owned(float_stream));
            stats.stage_counting("2.2.float_vgb", float_stream.get_count());
            let float_stream = GroupCodingStream::<u64, _>::new(BitsWrapper::Owned(float_stream));
            stats.stage_counting("2.3.float_codes", float_stream.counter());
            let float_stream = F64ToU64Stream::new(Box::new(float_stream));
            Box::new(float_stream)
        };

        let int_stream = {
            let int_stream = writer.new_stream();
            let int_stream = SharedCountingBits::new(BitsWrapper::Owned(int_stream));
            stats.stage_counting("3.1.int_gz", int_stream.get_count());
            let int_stream = CompressStream::new(BitsWrapper::Owned(int_stream));
            let int_stream = SharedCountingBits::new(BitsWrapper::Owned(int_stream));
            stats.stage_counting("3.2.int_vgb", int_stream.get_count());
            let int_stream = GroupCodingStream::<u64, _>::new(BitsWrapper::Owned(int_stream));
            let int_stream = I64ToU64Stream::new(Box::new(int_stream));
            let int_stream = DeltaStream::<i64>::new(Box::new(int_stream));
            Box::new(int_stream)
        };

        let str_stream = {
            let str_stream = writer.new_stream();
            let str_stream = SharedCountingBits::new(BitsWrapper::Owned(str_stream));
            stats.stage_counting("4.1.str_gz", str_stream.get_count());
            let str_stream = CompressStream::new(BitsWrapper::Owned(str_stream));
            let str_stream = GroupCodingStream::new(BitsWrapper::Owned(str_stream));
            Box::new(str_stream)
        };

        Ok(Self {
            float_stream,
            time_stream,
            meta_stream,
            int_stream,
            str_stream,
            stats,
        })
    }

    #[must_use]
    pub fn float_stream(self) -> CodedTimeSeriesFloatWriter<'a> {
        CodedTimeSeriesFloatWriter { writer: self }
    }
    #[must_use]
    pub fn int_stream(self) -> CodedTimeSeriesIntWriter<'a> {
        CodedTimeSeriesIntWriter { writer: self }
    }

    pub fn write_str(&mut self, time: Time64, value: StrWrapper<'a>) -> Result<(), Error> {
        self.time_stream.write_value(time.as_u64())?;
        self.str_stream.write_value(value)?;
        Ok(())
    }

    pub fn flush(&mut self) -> Result<(), Error> {
        self.time_stream.flush()?;
        self.float_stream.flush()?;
        self.int_stream.flush()?;
        self.str_stream.flush()?;
        self.meta_stream.flush()?;
        Ok(())
    }
    pub fn written_stats(&self) -> Vec<String> {
        let mut out = self.stats.stats();
        out.push(self.meta_stream.written_stats());
        out.push(self.time_stream.written_stats());
        out.push(self.float_stream.written_stats());
        out.push(self.int_stream.written_stats());
        out.push(self.str_stream.written_stats());
        out
    }

    pub fn metadata(&'a mut self, key: Arc<String>, value: Arc<String>) -> Result<(), Error> {
        self.meta_stream.write_value(key)?;
        self.meta_stream.write_value(value)?;
        Ok(())
    }
}
pub struct CodedTimeSeriesFloatWriter<'a> {
    writer: CodedTimeSeriesWriter<'a>,
}
impl<'a> CodedTimeSeriesFloatWriter<'a> {
    pub fn write_sample(&mut self, sample: &Sample64) -> Result<(), Error> {
        let Sample64 { time, value } = sample;
        self.writer.time_stream.write_value(time.as_u64())?;
        self.writer.float_stream.write_value(*value)?;
        Ok(())
    }
    pub fn metadata<K: AsRef<str> + 'a, V: AsRef<str> + 'a>(
        &'a mut self,
        key: &'a K,
        value: &'a V,
    ) -> Result<(), Error> {
        let key = Arc::new(key.as_ref().to_string());
        let value = Arc::new(value.as_ref().to_string());
        self.writer.metadata(key, value)
    }
    pub fn flush(&mut self) -> Result<(), Error> {
        self.writer.flush()
    }
    pub fn written_stats(&self) -> Vec<String> {
        self.writer.written_stats()
    }
}
pub struct CodedTimeSeriesIntWriter<'a> {
    writer: CodedTimeSeriesWriter<'a>,
}
impl<'a> CodedTimeSeriesIntWriter<'a> {
    pub fn write_sample(&mut self, time: Time64, value: u64) -> Result<(), Error> {
        self.writer.time_stream.write_value(time.as_u64())?;
        self.writer.int_stream.write_value(value)?;
        Ok(())
    }
    pub fn metadata<K: AsRef<str>, V: AsRef<str>>(
        &'a mut self,
        key: &K,
        value: &V,
    ) -> Result<(), Error> {
        let k = Arc::new(key.as_ref().to_string());
        let v = Arc::new(value.as_ref().to_string());
        self.writer.metadata(k, v)
    }
    pub fn flush(&mut self) -> Result<(), Error> {
        self.writer.flush()
    }
    pub fn written_stats(&self) -> Vec<String> {
        self.writer.written_stats()
    }
}
pub struct CodedTimeSeriesStrWriter<'a> {
    writer: CodedTimeSeriesWriter<'a>,
}
impl<'a> CodedTimeSeriesStrWriter<'a> {
    pub fn write_sample(&mut self, time: Time64, value: StrWrapper<'a>) -> Result<(), Error> {
        self.writer.time_stream.write_value(time.as_u64())?;
        self.writer.str_stream.write_value(value)?;
        Ok(())
    }
    pub fn metadata<K: AsRef<str> + 'a, V: AsRef<str> + 'a>(
        &'a mut self,
        key: &K,
        value: &V,
    ) -> Result<(), Error> {
        let key = Arc::new(key.as_ref().to_string());
        let value = Arc::new(value.as_ref().to_string());
        self.writer.metadata(key, value)
    }
    pub fn flush(&mut self) -> Result<(), Error> {
        self.writer.flush()
    }
    pub fn written_stats(&self) -> Vec<String> {
        self.writer.written_stats()
    }
}

pub enum TimeSeriesError {
    BitsError(BitsError),
    MissingMetadataStream,
    MissingFloatStream,
    MissingIntStream,
    MissingStrStream,
    MissingTimeStream,
}
impl TimeSeriesError {
    pub fn name(&self) -> &'static str {
        match self {
            TimeSeriesError::BitsError(..) => "BitsError",
            TimeSeriesError::MissingMetadataStream => "MissingMetadataStream",
            TimeSeriesError::MissingFloatStream => "MissingFloatStream",
            TimeSeriesError::MissingTimeStream => "MissingTimeStream",
            TimeSeriesError::MissingIntStream => "MissingIntStream",
            TimeSeriesError::MissingStrStream => "MissingStrStream",
        }
    }
}
impl From<BitsError> for TimeSeriesError {
    fn from(e: BitsError) -> Self {
        TimeSeriesError::BitsError(e)
    }
}
impl From<TimeSeriesError> for BitsError {
    fn from(e: TimeSeriesError) -> Self {
        match e {
            TimeSeriesError::BitsError(e) => e,
            _ => BitsError::new(BitsErrorKind::InvalidData, e.name()),
        }
    }
}
pub struct CodedTimeSeriesReader<'a> {
    metadata: OrderedHashMap<String, String>,
    float_decoder: Box<dyn Decoder<f64>>,
    time_decoder: Box<dyn Decoder<u64>>,
    int_decoder: Box<dyn Decoder<u64>>,
    str_decoder: Box<dyn Decoder<StrWrapper<'a>> + 'a>,
}
impl<'a> CodedTimeSeriesReader<'a> {
    pub fn new<T: AsRef<Path>>(path: T) -> Result<Self, TimeSeriesError> {
        let mut reader = MultiStreamReader::open(path)?;
        let mut streams = reader.drain(..);
        let Some(meta_stream) = streams.next() else {
            return Err(TimeSeriesError::MissingMetadataStream);
        };
        let mut meta_stream = InflateStream::new(BitsWrapper::Owned(meta_stream));
        let mut metadata = OrderedHashMap::<String, String>::new();
        while meta_stream.has_more()? {
            let key = String::read_from_be_bits(&mut meta_stream)?;
            let value = String::read_from_be_bits(&mut meta_stream)?;
            metadata.insert(key, value);
        }

        let Some(time_stream) = streams.next() else {
            return Err(TimeSeriesError::MissingTimeStream);
        };
        let time_stream = InflateStream::new(BitsWrapper::Owned(time_stream));
        let time_stream = GroupDecodingStream::<u64, _>::new(BitsWrapper::Owned(time_stream));
        let time_stream = ZigZagDecoder::new(Box::new(time_stream));
        let time_stream = AddingDecoder::new(Box::new(time_stream));

        let Some(float_stream) = streams.next() else {
            return Err(TimeSeriesError::MissingFloatStream);
        };
        let float_stream = InflateStream::new(BitsWrapper::Owned(float_stream));
        let float_stream = GroupDecodingStream::<u64, _>::new(BitsWrapper::Owned(float_stream));
        let float_stream = U64ToF64Decoder::new(Box::new(float_stream));

        let Some(int_stream) = streams.next() else {
            return Err(TimeSeriesError::MissingIntStream);
        };
        let int_stream = InflateStream::new(BitsWrapper::Owned(int_stream));
        let int_stream = GroupDecodingStream::<u64, _>::new(BitsWrapper::Owned(int_stream));
        let int_stream = U64ToI64Decoder::new(Box::new(int_stream));
        let int_stream = AddingDecoder::new(Box::new(int_stream));

        let Some(str_stream) = streams.next() else {
            return Err(TimeSeriesError::MissingStrStream);
        };
        let str_stream = InflateStream::new(BitsWrapper::Owned(str_stream));
        let str_stream =
            GroupDecodingStream::<StrWrapper<'a>, _>::new(BitsWrapper::Owned(str_stream));

        Ok(Self {
            metadata,
            float_decoder: Box::new(float_stream),
            time_decoder: Box::new(time_stream),
            int_decoder: Box::new(int_stream),
            str_decoder: Box::new(str_stream),
        })
    }

    pub fn float_reader(self) -> CodedTimeSeriesFloatReader<'a> {
        CodedTimeSeriesFloatReader {
            reader: self,
            last_item: None,
        }
    }
    pub fn int_reader(self) -> CodedTimeSeriesIntReader<'a> {
        CodedTimeSeriesIntReader {
            reader: self,
            last_item: None,
        }
    }
    pub fn str_reader(self) -> CodedTimeSeriesStrReader<'a> {
        CodedTimeSeriesStrReader {
            reader: self,
            last_item: None,
        }
    }

    pub fn metadata(&self) -> impl Iterator<Item = (&String, &String)> {
        self.metadata.iter()
    }
}
pub struct CodedTimeSeriesFloatReader<'a> {
    reader: CodedTimeSeriesReader<'a>,
    last_item: Option<Sample64>,
}
impl CodedTimeSeriesFloatReader<'_> {
    pub fn peek(&mut self) -> Result<&mut Option<Sample64>, Error> {
        if self.last_item.is_some() {
            Ok(&mut self.last_item)
        } else {
            if let Some(v) = self.next() {
                let v = v?;
                self.last_item = Some(v);
            }
            Ok(&mut self.last_item)
        }
    }
}
impl Iterator for CodedTimeSeriesFloatReader<'_> {
    type Item = Result<Sample64, Error>;

    fn next(&mut self) -> Option<Result<Sample64, Error>> {
        let r1 = self.reader.float_decoder.next();
        let r2 = self.reader.time_decoder.next();
        let float = match r1 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let time = match r2 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let float = float?;
        let time = time?;
        let samp = Sample64 {
            value: float,
            time: Time64::from_unix_raw(time),
        };
        self.last_item = Some(samp);
        Some(Ok(samp))
    }
}
pub struct CodedTimeSeriesIntReader<'a> {
    reader: CodedTimeSeriesReader<'a>,
    last_item: Option<IntSample64>,
}
impl CodedTimeSeriesIntReader<'_> {
    pub fn peek(&mut self) -> Result<&mut Option<IntSample64>, Error> {
        if self.last_item.is_some() {
            Ok(&mut self.last_item)
        } else {
            if let Some(v) = self.next() {
                let v = v?;
                self.last_item = Some(v);
            }
            Ok(&mut self.last_item)
        }
    }
}
impl Iterator for CodedTimeSeriesIntReader<'_> {
    type Item = Result<IntSample64, Error>;

    fn next(&mut self) -> Option<Result<IntSample64, Error>> {
        let r1 = self.reader.int_decoder.next();
        let r2 = self.reader.time_decoder.next();
        let val = match r1 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let time = match r2 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let val = val?;
        let time = time?;
        let samp = IntSample64 {
            value: val,
            time: Time64::from_unix_raw(time),
        };
        self.last_item = Some(samp);
        Some(Ok(samp))
    }
}
pub struct CodedTimeSeriesStrReader<'a> {
    reader: CodedTimeSeriesReader<'a>,
    last_item: Option<StrSample64<'a>>,
}
impl<'a> CodedTimeSeriesStrReader<'a> {
    pub fn peek(&mut self) -> Result<&mut Option<StrSample64<'a>>, Error> {
        if self.last_item.is_some() {
            Ok(&mut self.last_item)
        } else {
            if let Some(v) = self.next() {
                let v = v?;
                self.last_item = Some(v);
            }
            Ok(&mut self.last_item)
        }
    }
}
impl<'a> Iterator for CodedTimeSeriesStrReader<'a> {
    type Item = Result<StrSample64<'a>, Error>;

    fn next(&mut self) -> Option<Result<StrSample64<'a>, Error>> {
        let r1 = self.reader.str_decoder.next();
        let r2 = self.reader.time_decoder.next();
        let val = match r1 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let time = match r2 {
            Ok(v) => v,
            Err(e) => return Some(Err(e)),
        };
        let val = val?;
        let time = time?;
        let samp = StrSample64 {
            value: val,
            time: Time64::from_unix_raw(time),
        };
        self.last_item = Some(samp.clone());
        Some(Ok(samp))
    }
}

#[cfg(test)]
mod tests {
    use crate::tsdf::Sample64;
    use crate::tsdf::{CodedTimeSeriesReader, CodedTimeSeriesWriter};
    use irox_bits::Error;
    use irox_time::Time64;
    use irox_tools::buf::UnlimitedBuffer;
    use irox_tools::random::{Random, PRNG};
    use irox_units::units::duration::Duration;
    use std::time::Instant;

    #[test]
    pub fn test() -> Result<(), Error> {
        let mut data = UnlimitedBuffer::<Sample64>::new();
        {
            let file = CodedTimeSeriesWriter::new("test_file.tsd")?;
            let mut file = file.float_stream();
            // let mut buf2 = UnlimitedBuffer::<u8>::new();
            let mut input = Time64::now();
            let incr = Duration::from_millis(100);
            let start = Instant::now();
            let count = 20_000_000u64;
            let center = 100f64;
            let variance = 0.001f64;
            let mut rand = Random::default();
            {
                // let mut cbuf1 = CompressStream::new(BitsWrapper::Borrowed(&mut buf1));
                // let mut cbuf2 = CompressStream::new(BitsWrapper::Borrowed(&mut buf2));
                for _i in 0..count {
                    let val = rand.next_in_range(0., 4096.); // 12-bit A2D
                                                             // let val = rand.next_in_range(0., 8192.); // 13-bit A2D
                                                             // let val = rand.next_in_range(0., 16384.); // 14-bit A2D
                    let val = center + val.round() * variance - variance / 2f64;
                    // let val = (_i as f64) * center + val;
                    // println!("value: {val} // {:08X}", val.to_bits());
                    // cbuf1.write_value(input.as_u64())?;
                    // cbuf2.write_value(val)?;
                    let samp = Sample64::new(input, val);
                    data.push_back(samp);
                    file.write_sample(&samp)?;
                    input += incr;
                }
                file.flush()?;
                // drop(cbuf1);
                // drop(cbuf2);
            }
            let written = std::fs::metadata("test_file.tsd")?.len();
            let input_size = count * 16;
            let end = start.elapsed();
            // irox_tools::hex::HexDump::hexdump(&buf);
            let ratio = 1. - (written as f64 / input_size as f64);
            let ratio = ratio * 100.;
            let ubps = input_size as f64 / end.as_secs_f64() / 1e6;
            println!(
                "Turned {input_size} bytes into {written} = {ratio:02.}% reduction = {ubps:02.02}MB/s"
            );
            println!("{:#?}", file.written_stats());
            drop(file);
        }

        let file = CodedTimeSeriesReader::new("test_file.tsd")?;
        let mut file = file.float_reader();
        let num_samps = data.len();
        assert!(num_samps > 0);
        let mut idx = 0;
        loop {
            let res = file.peek()?;
            let Some(val) = res.take() else {
                break;
            };
            let Some(v) = data.pop_front() else {
                panic!("should not happen");
            };
            assert_eq!(val, v, "{idx}");
            idx += 1;
        }
        assert_eq!(num_samps, idx);
        Ok(())
    }
}