1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! Utility functions and types.
use anyhow::Result;
use bao_tree::blake3;
use postcard::experimental::max_size::MaxSize;
use serde::{
    de::{self, SeqAccess},
    ser::SerializeTuple,
    Deserialize, Deserializer, Serialize, Serializer,
};
use std::{fmt, result, str::FromStr};
use thiserror::Error;
pub mod io;
pub mod progress;
pub mod runtime;

/// Hash type used throught.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
pub struct Hash(blake3::Hash);

impl Hash {
    /// Calculate the hash of the provide bytes.
    pub fn new(buf: impl AsRef<[u8]>) -> Self {
        let val = blake3::hash(buf.as_ref());
        Hash(val)
    }

    /// Bytes of the hash.
    pub fn as_bytes(&self) -> &[u8; 32] {
        self.0.as_bytes()
    }

    /// Get the cid as bytes.
    pub fn as_cid_bytes(&self) -> [u8; 36] {
        let hash = self.0.as_bytes();
        let mut res = [0u8; 36];
        res[0..4].copy_from_slice(&CID_PREFIX);
        res[4..36].copy_from_slice(hash);
        res
    }

    /// Try to create a blake3 cid from cid bytes.
    ///
    /// This will only work if the prefix is the following:
    /// - version 1
    /// - raw codec
    /// - blake3 hash function
    /// - 32 byte hash size
    pub fn from_cid_bytes(bytes: &[u8]) -> anyhow::Result<Self> {
        anyhow::ensure!(
            bytes.len() == 36,
            "invalid cid length, expected 36, got {}",
            bytes.len()
        );
        anyhow::ensure!(bytes[0..4] == CID_PREFIX, "invalid cid prefix");
        let mut hash = [0u8; 32];
        hash.copy_from_slice(&bytes[4..36]);
        Ok(Self::from(hash))
    }

    /// Convert the hash to a hex string.
    pub fn to_hex(&self) -> String {
        self.0.to_hex().to_string()
    }
}

impl AsRef<[u8]> for Hash {
    fn as_ref(&self) -> &[u8] {
        self.0.as_bytes()
    }
}

impl From<Hash> for blake3::Hash {
    fn from(value: Hash) -> Self {
        value.0
    }
}

impl From<blake3::Hash> for Hash {
    fn from(value: blake3::Hash) -> Self {
        Hash(value)
    }
}

impl From<[u8; 32]> for Hash {
    fn from(value: [u8; 32]) -> Self {
        Hash(blake3::Hash::from(value))
    }
}

impl From<Hash> for [u8; 32] {
    fn from(value: Hash) -> Self {
        *value.as_bytes()
    }
}

impl From<&[u8; 32]> for Hash {
    fn from(value: &[u8; 32]) -> Self {
        Hash(blake3::Hash::from(*value))
    }
}

impl PartialOrd for Hash {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.0.as_bytes().cmp(other.0.as_bytes()))
    }
}

impl Ord for Hash {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.as_bytes().cmp(other.0.as_bytes())
    }
}

impl fmt::Display for Hash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // result will be 58 bytes plus prefix
        let mut res = [b'b'; 59];
        // write the encoded bytes
        data_encoding::BASE32_NOPAD.encode_mut(&self.as_cid_bytes(), &mut res[1..]);
        // convert to string, this is guaranteed to succeed
        let t = std::str::from_utf8_mut(res.as_mut()).unwrap();
        // hack since data_encoding doesn't have BASE32LOWER_NOPAD as a const
        t.make_ascii_lowercase();
        // write the str, no allocations
        f.write_str(t)
    }
}

impl FromStr for Hash {
    type Err = anyhow::Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let sb = s.as_bytes();
        if sb.len() == 59 && sb[0] == b'b' {
            // this is a base32 encoded cid, we can decode it directly
            let mut t = [0u8; 58];
            t.copy_from_slice(&sb[1..]);
            // hack since data_encoding doesn't have BASE32LOWER_NOPAD as a const
            std::str::from_utf8_mut(t.as_mut())
                .unwrap()
                .make_ascii_uppercase();
            // decode the bytes
            let mut res = [0u8; 36];
            data_encoding::BASE32_NOPAD
                .decode_mut(&t, &mut res)
                .map_err(|_e| anyhow::anyhow!("invalid base32"))?;
            // convert to cid, this will check the prefix
            Self::from_cid_bytes(&res)
        } else {
            // if we want to support all the weird multibase prefixes, we have no choice
            // but to use the multibase crate
            let (_base, bytes) = multibase::decode(s)?;
            Self::from_cid_bytes(bytes.as_ref())
        }
    }
}

impl Serialize for Hash {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        // Fixed-length structures, including arrays, are supported in Serde as tuples
        // See: https://serde.rs/impl-serialize.html#serializing-a-tuple
        let mut s = serializer.serialize_tuple(32)?;
        for item in self.0.as_bytes() {
            s.serialize_element(item)?;
        }
        s.end()
    }
}

impl<'de> Deserialize<'de> for Hash {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_tuple(32, HashVisitor)
    }
}

struct HashVisitor;

impl<'de> de::Visitor<'de> for HashVisitor {
    type Value = Hash;

    fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "an array of 32 bytes containing hash data")
    }

    /// Process a sequence into an array
    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
    where
        A: SeqAccess<'de>,
    {
        let mut arr = [0u8; 32];
        let mut i = 0;
        while let Some(val) = seq.next_element()? {
            arr[i] = val;
            i += 1;
            if i > 32 {
                return Err(de::Error::invalid_length(i, &self));
            }
        }

        Ok(Hash::from(arr))
    }
}

impl MaxSize for Hash {
    const POSTCARD_MAX_SIZE: usize = 32;
}

const CID_PREFIX: [u8; 4] = [
    0x01, // version
    0x55, // raw codec
    0x1e, // hash function, blake3
    0x20, // hash size, 32 bytes
];

/// A serializable error type for use in RPC responses.
#[derive(Serialize, Deserialize, Debug, Error)]
pub struct RpcError(serde_error::Error);

impl fmt::Display for RpcError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

impl From<anyhow::Error> for RpcError {
    fn from(e: anyhow::Error) -> Self {
        RpcError(serde_error::Error::new(&*e))
    }
}

impl From<std::io::Error> for RpcError {
    fn from(e: std::io::Error) -> Self {
        RpcError(serde_error::Error::new(&e))
    }
}

/// A serializable result type for use in RPC responses.
#[allow(dead_code)]
pub type RpcResult<T> = result::Result<T, RpcError>;

/// A non-sendable marker type
#[derive(Debug)]
pub(crate) struct NonSend {
    _marker: std::marker::PhantomData<std::rc::Rc<()>>,
}

impl NonSend {
    /// Create a new non-sendable marker.
    #[allow(dead_code)]
    pub const fn new() -> Self {
        Self {
            _marker: std::marker::PhantomData,
        }
    }
}

#[cfg(test)]
mod tests {
    use iroh_test::{assert_eq_hex, hexdump::parse_hexdump};

    use super::*;

    use serde_test::{assert_tokens, Token};

    #[test]
    fn test_hash() {
        let data = b"hello world";
        let hash = Hash::new(data);

        let encoded = hash.to_string();
        assert_eq!(encoded.parse::<Hash>().unwrap(), hash);
    }

    #[test]
    fn hash_wire_format() {
        let hash = Hash::from([0xab; 32]);
        let serialized = postcard::to_stdvec(&hash).unwrap();
        let expected = parse_hexdump(r"
            ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab # hash
        ").unwrap();
        assert_eq_hex!(serialized, expected);
    }

    #[test]
    fn test_hash_serde() {
        let hash = Hash::new("hello");

        // Hashes are serialized as 32 tuples
        let mut tokens = Vec::new();
        tokens.push(Token::Tuple { len: 32 });
        for byte in hash.as_bytes() {
            tokens.push(Token::U8(*byte));
        }
        tokens.push(Token::TupleEnd);
        assert_eq!(tokens.len(), 34);

        assert_tokens(&hash, &tokens);
    }

    #[test]
    fn test_hash_postcard() {
        let hash = Hash::new("hello");
        let ser = postcard::to_stdvec(&hash).unwrap();
        let de = postcard::from_bytes(&ser).unwrap();
        assert_eq!(hash, de);

        assert_eq!(ser.len(), 32);
    }
}