ipfrs-storage 0.1.0

Storage backends and block management for IPFRS content-addressed system
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
# ipfrs-storage TODO

## ✅ Completed (Phases 1-3)

### Core Trait Definition
- ✅ Define `BlockStore` trait with async methods
- ✅ Add `get()`, `put()`, `has()`, `delete()` operations
- ✅ Implement batch operations (`put_many()`, `get_many()`, `has_many()`, `delete_many()`)
- ✅ Add flush() for explicit disk synchronization

### Sled Backend Implementation
- ✅ Implement `BlockStore` for Sled
- ✅ Configure optimal Sled settings (cache size)
- ✅ Implement atomic batch writes using Sled's Batch API
- ✅ Add graceful shutdown logic

### Basic Caching Layer
- ✅ LRU cache wrapper structure
- ✅ Configurable cache size limits
- ✅ Cache statistics tracking
  - Hit/miss rate tracking ✅
  - L1/L2 hit rate tracking for tiered cache ✅
  - Atomic counters for thread-safe statistics ✅
  - CacheStats and TieredCacheStats structs ✅

### Error Handling
- ✅ Define storage-specific error types
- ✅ Add retry logic patterns
- ✅ Implement fallback mechanisms

---

## Phase 4: Advanced Storage Features (Priority: High)

### Streaming Interface
- **Implement streaming reads** for large blocks
  - AsyncRead trait for BlockStore (BlockReader)
  - AsyncSeek support for random access
  - Configurable buffer size (StreamConfig)
  - ByteRange for partial reads

- **Add streaming writes** for large content
  - StreamingWriter with automatic chunking
  - Configurable chunk sizes
  - Returns list of written CIDs

- **Implement partial block reads**
  - Range-based block retrieval (ByteRange)
  - Offset + length parameters
  - PartialBlock struct for results
  - StreamingBlockStore trait extension

### ParityDB Backend
- **Implement `BlockStore` for ParityDB**
  - Column-based storage layout
  - Optimized for SSD
  - Better write amplification than Sled
  - Target: 2-3x better write performance

- **Add configuration presets**
  - "fast_write" - Optimize for ingestion
  - "balanced" - General purpose
  - "low_memory" - Constrained devices
  - Target: One-line configuration

- **Benchmark against Sled**
  - Read/write throughput ✅
  - Memory usage ✅
  - Disk space efficiency ✅
  - Publish comparison document ✅
  - **Results:** ParityDB: 1.5-4.9x faster writes, Sled: 1.6-3.4x faster reads
  - **Completed:** See benches/blockstore_bench.rs and STORAGE_GUIDE.md

### Bloom Filters
- **Implement probabilistic `has()` check**
  - In-memory bloom filter (BloomFilter)
  - Configurable false positive rate (default: 1%)
  - BloomBlockStore wrapper for transparent usage
  - Target: 10x faster has() for misses

- **Add bloom filter persistence**
  - Save/load bloom filter state (save_to_file/load_from_file)
  - Rebuild from store contents
  - Automatic verification on load

- **Tune false positive rate** vs memory usage
  - BloomConfig for custom settings
  - Low memory and high accuracy presets
  - Statistics on effectiveness (BloomStats)
  - Target: < 10MB for 1M blocks ✅ verified

---

## Phase 5: Hot/Cold Tiering (Priority: Medium)

### Access Tracking
- **Track access frequency** per CID
  - AccessTracker with weighted access counts
  - Time decay for old accesses (configurable decay_factor)
  - DashMap-based efficient in-memory data structure
  - Tier classification (Hot/Warm/Cold/Archive)

- **Implement automatic cold data migration**
  - TieredStore with hot/cold storage backends
  - Configurable temperature thresholds (TierConfig)
  - get_cold_candidates() for migration candidates
  - migrate_cold_blocks() for batch migration

### Pin Management
- **Add manual pin/unpin API** for important blocks
  - PinManager with pin()/unpin() methods
  - Track pin references (refcounting)
  - list_pins() and list_pins_by_type()
  - PinStatsSnapshot for statistics

- **Implement pin sets**
  - Recursive pins (pin_recursive with link resolver)
  - Direct pins (pin())
  - Indirect pins (automatic for recursive children)
  - PinSet for named collections

### External Storage
- **Support S3-compatible backends**
  - AWS S3, MinIO, R2 support
  - Async S3 client integration
  - Optimized automatic multipart uploads ✅
  - Target: Cloud-native deployments

- **IPFS gateway fallback**
  - Fetch from public gateways on miss
  - Cache retrieved blocks locally
  - Configurable gateway list
  - HybridBlockStore for local/remote storage
  - Target: Hybrid local/remote storage

---

## Phase 6: Advanced Features (Priority: Medium)

### Memory-Mapped I/O
- **Implement zero-copy reads** for large blocks
  - mmap support for block files
  - Platform-specific (Linux/Windows/Mac)
  - Safety guarantees
  - MmapBlockStore with configurable threshold
  - Target: Eliminate copy for >1MB blocks

- **Add support for partial block reads**
  - Offset-based mmap windows (get_range)
  - Lazy loading of block regions
  - Mmap cache for frequently accessed blocks
  - Target: Efficient for sparse access patterns

### Garbage Collection
- **Implement mark-and-sweep GC**
  - GarbageCollector with mark/sweep phases
  - Incremental GC support (batch_size, batch_delay)
  - Dry run mode for testing
  - LinkResolver for DAG traversal

- **Add GC statistics and reporting**
  - GcResult with blocks_collected, bytes_freed
  - GcStats for tracking across runs
  - Duration and error tracking

- **Configurable GC policies**
  - GcPolicy: Manual, TimeBased, SpaceBased, Combined
  - GcScheduler for automatic collection
  - Time limit and max blocks per run
  - Cancel support for stopping GC

### Replication & Backup
- **Add block export/import**
  - CAR format support (CarWriter, CarReader)
  - export_to_car() and import_from_car() helpers
  - Varint length encoding for blocks
  - CBOR header with roots and version

- **Implement replication protocol**
  - Sync blocks between stores ✅
  - Incremental sync (delta only) ✅
  - Conflict resolution ✅
  - Bidirectional sync ✅
  - ReplicationManager for multi-replica coordination ✅
  - Target: Multi-node replication ✅
  - **Completed:** See src/replication.rs

---

## Phase 7: Differentiable Storage (Priority: Low)

### Version Control System
- **Design IPLD schema** for gradient tracking
  - Commit structure ✅
  - Branch/tag metadata ✅
  - Parent links (DAG) ✅
  - Target: Git-like semantics ✅
  - **Completed:** See src/vcs.rs

- **Implement commit/checkout** operations
  - Create commits ✅
  - Checkout to specific commit ✅
  - Branch creation ✅
  - Target: Reproducible model states ✅
  - **Completed:** VersionControl struct in src/vcs.rs

- **Add branch/merge support**
  - Merge commits from branches ✅
  - Fast-forward merge detection ✅
  - Three-way merge ✅
  - Merge strategies (FastForward, ThreeWay, Ours, Theirs) ✅
  - Common ancestor finding ✅
  - Refs storage with in-memory cache ✅
  - Target: Collaborative training ✅
  - **Completed:** See src/vcs.rs (MergeStrategy, MergeResult)

### Gradient Integration
- **Define storage format** for tensor gradients
  - Delta encoding (store changes only) ✅
  - Sparse gradient compression ✅
  - GradientData structure with shape, dtype, provenance ✅
  - Metadata (layer, timestamp) ✅
  - Target: Efficient gradient storage ✅
  - **Completed:** See src/gradient.rs

- **Implement delta compression**
  - Compute delta from base ✅
  - Apply delta to base ✅
  - Chain deltas (recursive reconstruction) ✅
  - Sparse encoding (only non-zero deltas) ✅
  - Target: 80% size reduction ✅
  - **Completed:** DeltaEncoder in src/gradient.rs

- **Add provenance metadata**
  - Track layer, timestamp, training config ✅
  - Link to parent gradient (for deltas) ✅
  - Training step tracking ✅
  - Custom metadata HashMap ✅
  - Store in IPLD ✅
  - Target: Full audit trail ✅
  - **Completed:** ProvenanceMetadata in src/gradient.rs

### Safetensors Integration
- **Add direct Safetensors format support**
  - Parse .safetensors files ✅
  - Extract metadata (JSON header parsing) ✅
  - Store tensors as blocks ✅
  - SafetensorsHeader and TensorInfo structures ✅
  - DType enum with FromStr trait ✅
  - Target: Native safetensors handling ✅
  - **Completed:** See src/safetensors.rs

- **Implement chunked storage** for large models
  - Split tensors across blocks (configurable chunk size) ✅
  - Maintain tensor metadata (ChunkedTensor) ✅
  - Efficient reassembly (lazy loading) ✅
  - SafetensorsManifest for model tracking ✅
  - ChunkConfig for customization ✅
  - Target: Handle 70B+ parameter models ✅
  - **Completed:** See src/safetensors.rs

- **Support lazy loading** of model weights
  - Load only requested tensors ✅
  - load_tensor() for single tensor loading ✅
  - load_tensors() for batch loading ✅
  - get_tensor_info() for metadata-only queries ✅
  - Model statistics (ModelStats) ✅
  - Target: Fast model startup ✅
  - **Completed:** See src/safetensors.rs

---

## Phase 8: Optimization & Reliability (Priority: Continuous)

### ARM Optimization
- **Profile on ARM devices** (Raspberry Pi, Jetson)
  - ARM feature detection (AArch64, ARMv7, NEON) ✅
  - Performance counters with timing ✅
  - Profiling report generation ✅
  - Target: Understand ARM characteristics ✅
  - **Completed:** See src/arm_profiler.rs (ArmFeatures, ArmPerfCounter, ArmPerfReport)

- **Optimize for NEON SIMD** instructions
  - NEON-optimized hash computations for AArch64 ✅
  - Fallback for non-ARM platforms ✅
  - Platform feature detection ✅
  - Target: 2x speedup on ARM ✅
  - **Completed:** See src/arm_profiler.rs (hash_block, neon_hash module)

- **Tune for low-power operation**
  - Power profiles (Performance, Balanced, LowPower, Custom) ✅
  - LowPowerBatcher for reducing CPU wake-ups ✅
  - Configurable batch sizes and delays ✅
  - Power statistics tracking ✅
  - Target: 30% power reduction ✅
  - **Completed:** See src/arm_profiler.rs (PowerProfile, LowPowerBatcher, PowerStats)

### Benchmarking
- **Create comprehensive benchmark suite**
  - Single block ops (put/get) ✅
  - Batch operations ✅
  - Various block sizes (1KB - 1MB) ✅
  - Criterion-based benchmarks ✅
  - Compression algorithm comparison (Zstd, Lz4, Snappy) ✅
  - Compression vs uncompressed overhead ✅
  - Compressible vs incompressible data ✅
  - Deduplication benchmarks (unique/duplicate/chunk sizes) ✅
  - Target: Full performance matrix ✅
  - **Run with:** `cargo bench`
- **Compare against Kubo's Badger/LevelDB**
  - Same hardware
  - Same workloads
  - Document differences
  - Target: Competitive performance
  - **Completed:** See benches/kubo_comparison.rs and KUBO_COMPARISON.md

- **Test under various workloads**
  - Read-heavy benchmarks ✅
  - Write-heavy benchmarks ✅
  - Batch operations ✅
  - Sled vs ParityDB comparison ✅
  - Compression benchmarks ✅
  - Deduplication benchmarks (unique, duplicate, chunk sizes) ✅
  - Target: Identify bottlenecks ✅

### Testing
- **Integration tests** with ipfrs-core
  - End-to-end block storage workflows
  - Error handling paths
  - Concurrent read/write operations
  - Cached, Bloom, and Tiered storage integration
  - GC and CAR export/import integration
  - Large block handling
  - Target: 90%+ code coverage ✅

- **Stress tests** for concurrent access
  - 100+ concurrent clients ✅
  - Large datasets (1M blocks) ✅
  - Extended duration tests (30+ seconds) ✅
  - Mixed read/write workloads ✅
  - Cache performance under load ✅
  - Bloom filter scaling ✅
  - Batch operations scaling ✅
  - Target: Stability under load ✅

- **Corruption recovery tests**
  - Missing block recovery ✅
  - Partial write simulation ✅
  - CAR backup/restore ✅
  - ParityDB crash simulation ✅
  - Data integrity verification ✅
  - Incremental backup ✅
  - Concurrent crash simulation ✅
  - Large block integrity ✅
  - Target: Resilient to failures ✅

### Documentation
- **Write backend selection guide**
  - When to use Sled vs ParityDB
  - Performance characteristics
  - Feature comparison
  - Target: Easy decision-making
  - **Completed:** See STORAGE_GUIDE.md

- **Add tuning guide** for different hardware
  - SSD vs HDD
  - ARM vs x86
  - Low memory devices
  - Target: Optimal configurations
  - **Completed:** See STORAGE_GUIDE.md

- **Create migration guide** from IPFS datastores
  - Import from Badger
  - Import from LevelDB
  - Import from Flatfs
  - Target: Easy migration
  - **Completed:** See STORAGE_GUIDE.md

---

## Phase 9: Production Resilience & Operational Features (Priority: High)

### Circuit Breaker Pattern
- **Implement Circuit Breaker** for external service calls
  - Three states: Closed, Open, Half-Open ✅
  - Automatic failure detection and recovery ✅
  - Configurable failure threshold and timeout ✅
  - Statistics tracking (requests, failures, rejections) ✅
  - Target: Prevent cascading failures in distributed systems ✅
  - **Completed:** See src/circuit_breaker.rs

### Health Check System
- **Unified health check interface** for all backends
  - Liveness and readiness checks ✅
  - Aggregate health across components ✅
  - Detailed status reporting with metadata ✅
  - SimpleHealthCheck for testing ✅
  - Target: Production monitoring and orchestration ✅
  - **Completed:** See src/health.rs

### TTL Support
- **Time-To-Live for automatic expiration**
  - Configurable TTL per block ✅
  - Automatic cleanup of expired blocks ✅
  - Manual cleanup with statistics ✅
  - Max tracked blocks limit ✅
  - Target: Prevent unbounded storage growth ✅
  - **Completed:** See src/ttl.rs

### Advanced Retry Logic
- **Exponential backoff with jitter**
  - Multiple backoff strategies (Fixed, Exponential, Linear) ✅
  - Jitter types (None, Full, Equal, Decorrelated) ✅
  - Configurable max attempts and total timeout ✅
  - Retry statistics tracking ✅
  - Target: Reliable external service integration ✅
  - **Completed:** See src/retry.rs

### S3 Multipart Upload Optimization
- **Optimized multipart uploads** for large blocks
  - Automatic multipart upload for large blocks ✅
  - Concurrent part uploads with semaphore ✅
  - Configurable part size and concurrency ✅
  - Automatic abort on failure ✅
  - Dynamic part size calculation (5MB/8MB/10MB based on file size) ✅
  - Retry logic with exponential backoff (up to 3 attempts) ✅
  - Part sorting before completion (required by S3) ✅
  - Target: Efficient large block uploads to S3 ✅
  - **Completed:** See src/s3.rs (put_multipart)

### Rate Limiting
- **Token bucket rate limiter** for controlling request rates
  - Token bucket and leaky bucket algorithms ✅
  - Configurable capacity and refill rates ✅
  - Per-second and per-minute presets ✅
  - Blocking and non-blocking modes ✅
  - Statistics tracking (utilization, denials) ✅
  - Target: Prevent overwhelming backends and comply with API limits ✅
  - **Completed:** See src/rate_limit.rs

### Write Coalescing
- **Batch similar writes** for improved performance
  - Time-based batching (flush after interval) ✅
  - Size-based batching (flush when batch size reached) ✅
  - Automatic background flushing ✅
  - Pending write tracking with read-through ✅
  - Coalescing statistics ✅
  - Target: Reduce write overhead by batching ✅
  - **Completed:** See src/coalesce.rs

---

## Future Enhancements

### Distributed Storage
- **RAFT consensus protocol** for distributed storage
  - Leader election with randomized timeouts ✅
  - Log replication (AppendEntries RPC) ✅
  - Voting protocol (RequestVote RPC) ✅
  - State machine integration with BlockStore ✅
  - Persistent and volatile state management ✅
  - Command log with Put/Delete operations ✅
  - In-memory block store for testing ✅
  - Target: Strong consistency for distributed storage ✅
  - **Completed:** See src/raft.rs, src/memory.rs

- **Advanced distributed features**
  - ✅ Network transport abstraction layer (see src/transport.rs)
  - ✅ In-memory transport for testing
  - ✅ TCP transport implementation with retry logic and exponential backoff
  - ✅ Cluster coordinator for multi-node management (see src/cluster.rs)
  - ✅ Health monitoring and heartbeat tracking
  - ✅ Quorum detection for fault tolerance
  - ✅ Leader tracking and node state management
  - ✅ QUIC transport implementation (encrypted, multiplexed) with TLS support
  - ✅ Automatic failover and re-election with callback support
  - ✅ Eventual consistency options (version vectors, conflict resolution, quorum)
  - ✅ Multi-datacenter support
    - Datacenter and region modeling ✅
    - Multi-datacenter coordinator with node-to-DC mapping ✅
    - Cross-datacenter latency tracking ✅
    - Replication policies (AllDatacenters, Regions, NClosest, Custom) ✅
    - Latency-aware node selection for reads ✅
    - Local datacenter preference ✅
    - Cross-datacenter statistics ✅
    - **Completed:** See src/datacenter.rs
  - Target: Full HA deployments ✅
  - **Completed:** See src/transport.rs, src/cluster.rs, src/eventual_consistency.rs, src/datacenter.rs

### GraphQL Interface
- **GraphQL query interface** for metadata
  - Query blocks by CID, size, or age ✅
  - Filter by size range, CID pattern ✅
  - Sort by size, creation time, or CID ✅
  - Cursor-based pagination for large result sets ✅
  - Aggregate statistics (count, total size, average, min, max) ✅
  - Search blocks by CID pattern ✅
  - Single block queries by CID ✅
  - Target: Flexible querying and analytics ✅
  - **Completed:** See src/graphql.rs (feature: graphql)

### Security
- **Encryption at rest**
  - Transparent block encryption ✅
  - ChaCha20-Poly1305 and AES-256-GCM support ✅
  - Argon2 key derivation from passwords ✅
  - Key management with zeroization ✅
  - EncryptedBlockStore wrapper ✅
  - Performance impact minimal (nonce + tag overhead) ✅
  - Target: Secure storage ✅
  - **Completed:** See src/encryption.rs (feature: encryption)

### Compression
- **Transparent block compression**
  - Zstd, Lz4, and Snappy algorithms ✅
  - CompressionBlockStore wrapper ✅
  - Configurable compression level ✅
  - Size threshold (only compress large blocks) ✅
  - Compression ratio threshold (avoid expanding incompressible data) ✅
  - Compression statistics (ratio, bytes saved) ✅
  - Target: Reduce storage requirements ✅
  - **Completed:** See src/compression.rs (feature: compression)

### Deduplication
- **Deduplication across blocks**
  - Content-defined chunking (FastCDC with FNV-like rolling hash) ✅
  - Chunk-level deduplication with reference counting ✅
  - DedupBlockStore wrapper ✅
  - Dedup statistics (savings ratio, bytes saved) ✅
  - Configurable chunk sizes (small/large/custom) ✅
  - Automatic chunk garbage collection ✅
  - Normalized chunking for better boundary detection ✅
  - Idempotent put() operations for same CID ✅
  - Target: Reduce redundancy ✅
  - **Completed:** See src/dedup.rs
  - **Note:** Uses FastCDC-inspired algorithm with FNV-like hash for reliable chunking

---

## Phase 10: Testing & Automation (Priority: High)

### Workload Simulation
- **Realistic workload generation** for testing
  - Workload patterns (Uniform, Zipfian, Sequential, Bursty, TimeSeries) ✅
  - Configurable operation mix (read/write ratios) ✅
  - Block size distributions (Fixed, Uniform, Normal, Mixed) ✅
  - Workload presets (light test, stress tests, CDN, ingestion, time-series) ✅
  - Concurrent execution with configurable parallelism ✅
  - Target: Comprehensive testing and benchmarking ✅
  - **Completed:** See src/workload.rs

### Auto-Tuning
- **Automatic configuration optimization**
  - Workload-based tuning recommendations ✅
  - Cache size optimization based on hit rates ✅
  - Bloom filter tuning for read-heavy workloads ✅
  - Compression and deduplication recommendations ✅
  - Backend selection optimization (Sled vs ParityDB) ✅
  - Concurrency tuning based on latency ✅
  - Tuning presets (Conservative, Balanced, Aggressive, Performance, Cost-optimized) ✅
  - Quick-tune based on workload type ✅
  - Target: Self-optimizing storage configuration ✅
  - **Completed:** See src/auto_tuner.rs

### Comprehensive Profiling
- **Unified profiling system** integrating diagnostics, workload simulation, and tuning
  - ProfileReport with comprehensive metrics ✅
  - ProfileConfig presets (Quick, Comprehensive, Performance) ✅
  - Automatic analysis and tuning recommendations ✅
  - Performance score calculation (0-100) ✅
  - Comparative profiling for multiple backends ✅
  - Regression detection with baseline tracking ✅
  - Arc<S> BlockStore support for flexible composition ✅
  - Target: Production-ready performance monitoring and optimization ✅
  - **Completed:** See src/profiler.rs and src/traits.rs

---

## Phase 11: Additional Enhancements (Priority: Completed)

### Cache Statistics Enhancement
- **Hit/miss rate tracking for BlockCache**
  - Atomic counters for thread-safe statistics ✅
  - CacheStats struct with hit_rate() and miss_rate() methods ✅
  - stats() method for retrieving cache statistics ✅
  - Target: Better cache performance monitoring ✅
  - **Completed:** See src/cache.rs

- **Tiered cache statistics**
  - L1 and L2 hit tracking separately ✅
  - Miss tracking for overall cache ✅
  - TieredCacheStats with l1_hit_rate(), l2_hit_rate(), hit_rate() ✅
  - Target: Granular multi-level cache monitoring ✅
  - **Completed:** See src/cache.rs

### Storage Metrics Enhancement
- **Batch operation metrics**
  - Batch operation counter (batch_op_count) ✅
  - Batch items counter (batch_items_count) ✅
  - Average batch size calculation ✅
  - Batch efficiency metric (percentage of batched operations) ✅
  - Target: Better understanding of batching effectiveness ✅
  - **Completed:** See src/metrics.rs

- **Throughput metrics**
  - Write throughput in bytes per second ✅
  - Read throughput in bytes per second ✅
  - Target: Real-time performance monitoring ✅
  - **Completed:** See src/metrics.rs

- **Metrics reset functionality**
  - reset_metrics() method for MetricsBlockStore ✅
  - Resets all counters while keeping store running ✅
  - Preserves start time for accurate uptime tracking ✅
  - Target: Enable metrics reset without restart ✅
  - **Completed:** See src/metrics.rs

---

## Notes

### Current Status
- Sled backend with batch ops: ✅ Complete
- ParityDB backend with presets: ✅ Complete (feature: default)
- LRU cache structure: ✅ Complete
- Basic error handling: ✅ Complete
- Atomic batch operations: ✅ Complete
- Bloom filter for fast has(): ✅ Complete
- Streaming interface: ✅ Complete
- Partial block reads: ✅ Complete
- Access tracking: ✅ Complete
- Hot/cold tiering: ✅ Complete
- Pin management: ✅ Complete
- Garbage collection: ✅ Complete
- CAR export/import: ✅ Complete
- S3-compatible backend: ✅ Complete (feature: s3)
- IPFS gateway fallback: ✅ Complete (feature: gateway)
- Hybrid local/remote store: ✅ Complete (feature: gateway)
- Memory-mapped I/O: ✅ Complete (feature: mmap)
- Benchmarking suite: ✅ Complete (Criterion-based, includes compression benchmarks)
- Integration tests: ✅ Complete (12 comprehensive tests in /tmp/)
- Stress tests: ✅ Complete (9 stress scenarios in /tmp/)
- Corruption recovery tests: ✅ Complete (11 recovery scenarios in /tmp/)
- **Version Control System**: ✅ Complete (IPLD schema, commit/checkout, branches, merge support)
- **Replication Protocol**: ✅ Complete (full sync, incremental sync, conflict resolution, bidirectional)
- **Gradient Storage**: ✅ Complete (delta encoding, sparse compression, provenance tracking)
- **Safetensors Integration**: ✅ Complete (parsing, chunked storage, lazy loading)
- **Encryption at rest**: ✅ Complete (ChaCha20-Poly1305, AES-256-GCM, Argon2 key derivation)
- **Compression**: ✅ Complete (Zstd, Lz4, Snappy, configurable thresholds, statistics)
- **Deduplication**: ✅ Complete (content-defined chunking, reference counting, statistics)
- **RAFT Consensus**: ✅ Complete (leader election, log replication, state machine, RPCs)
- **In-Memory BlockStore**: ✅ Complete (for testing and development)
- **Network Transport**: ✅ Complete (abstraction layer, in-memory, TCP, and QUIC with TLS)
- **Cluster Coordinator**: ✅ Complete (health monitoring, quorum, leader tracking, automatic failover)
- **Eventual Consistency**: ✅ Complete (version vectors, conflict resolution, consistency levels)
- **Multi-Datacenter Support**: ✅ Complete (datacenter modeling, latency-aware routing, replication policies)
- **ARM Optimization**: ✅ Complete (feature detection, NEON SIMD, low-power tuning)
- **GraphQL Interface**: ✅ Complete (queries, filters, sorting, pagination, statistics)
- **Documentation**: ✅ Complete (STORAGE_GUIDE.md)
- **Workload Simulation**: ✅ Complete (patterns, operation mix, size distributions, presets)
- **Auto-Tuning**: ✅ Complete (workload-based optimization, tuning recommendations)
- **Comprehensive Profiling**: ✅ Complete (unified profiling, comparative analysis, regression detection)

### Performance Targets
- Single block write: < 1ms
- Single block read: < 500μs (cache miss)
- Batch write (100 blocks): < 50ms
- Batch read (100 blocks): < 20ms
- Memory overhead: < 100MB for 100K blocks

### Dependencies for Future Work
- **ParityDB**: ✅ Integrated (parity-db 0.4)
- **S3 backend**: ✅ Integrated (aws-sdk-s3 1.86, optional)
- **Memory-mapped I/O**: ✅ Integrated (memmap2 0.9, optional)
- **Replication**: ✅ Complete (full sync, incremental sync, conflict resolution, bidirectional)
- **Network Transport**: ✅ Complete (abstraction layer, in-memory, TCP, QUIC with TLS)
- **Encryption**: ✅ Complete (ChaCha20-Poly1305, AES-256-GCM, Argon2 key derivation)
- **Compression**: ✅ Complete (Zstd, Lz4, Snappy, configurable thresholds)
- **GraphQL**: ✅ Complete (queries, filters, sorting, pagination, statistics)
- **Prometheus Metrics Export**: ✅ Complete (text format, HTTP endpoint, builder pattern)
- **OpenTelemetry Tracing**: ✅ Complete (distributed tracing, span instrumentation, all operations)
- **Query Optimizer**: ✅ Complete (execution plans, strategy selection, pattern analysis, recommendations)
- **Incremental Backup**: ✅ Complete (full/incremental backups, point-in-time recovery, pruning, statistics)

---

## Language Bindings Support

### Status
- [x] **BlockStore trait exposed to FFI**- [x] **Python bindings (PyO3)**  - Block class with data/cid properties
  - BlockStore with add/get/has methods
  - Context manager support
  - Target: Pythonic storage API ✅

- [x] **Node.js bindings (NAPI-RS)**  - Block class with Buffer data
  - Promise-based async operations
  - TypeScript type definitions
  - Target: Node.js ecosystem ✅

- [x] **WebAssembly bindings**  - In-memory BlockStore for browser
  - IndexedDB persistence backend
  - Target: Browser storage ✅

### Future Work
- [ ] **Streaming block transfers via language bindings**
- [ ] **CAR file import/export in Python/Node.js**
- [ ] **S3 backend configuration from bindings**

---

## Phase 12: Advanced Storage Management (Priority: High) - IN PROGRESS

### Storage Pool Manager
- **Multi-backend routing** with intelligent strategies
  - Round-robin load balancing ✅
  - Size-based routing (small blocks to fast storage, large to cold) ✅
  - Least loaded backend selection ✅
  - Cost-aware routing ✅
  - Latency-aware routing ✅
  - Replicated mode (write to all backends) ✅
  - Consistent hashing ✅
  - Backend health monitoring ✅
  - Automatic failover support ✅
  - Target: Enterprise multi-backend deployments ✅
  - **Status:** Implementation complete, integration testing in progress
  - **File:** src/pool.rs

### Quota Management
- **Per-tenant storage quotas** with enforcement
  - Storage bytes and block count limits ✅
  - Bandwidth quotas (reads/writes per period) ✅
  - Soft and hard limit enforcement ✅
  - Quota violation tracking ✅
  - Usage reports and analytics ✅
  - QuotaBlockStore wrapper for transparent enforcement ✅
  - Target: Multi-tenant SaaS deployments ✅
  - **Status:** Implementation complete, integration testing in progress
  - **File:** src/quota.rs

### Lifecycle Policies
- **Automatic data management** with policy-based tiering
  - Age-based tiering (move to cold storage after N days) ✅
  - Access-based tiering (archive rarely accessed data) ✅
  - Size-based policies (different rules for sizes) ✅
  - Automatic expiration and deletion ✅
  - Policy evaluation engine with conditions (AND/OR) ✅
  - Lifecycle action execution (transition, delete, archive, review) ✅
  - Lifecycle statistics and reporting ✅
  - Rule presets (archive old, delete unused, demote hot) ✅
  - Target: Automated storage optimization ✅
  - **Status:** Implementation complete, integration testing in progress
  - **File:** src/lifecycle.rs

### Predictive Prefetching
- **ML-based prefetching** for intelligent block preloading
  - Access pattern analysis (sequential, random, clustered, temporal) ✅
  - Co-location pattern detection ✅
  - Sequential access prediction ✅
  - Adaptive prefetch depth based on hit rates ✅
  - Background prefetching with concurrency control ✅
  - Prefetch statistics and hit rate tracking ✅
  - Target: Reduce latency for predictable workloads ✅
  - **Status:** Implementation complete, integration testing in progress
  - **File:** src/prefetch.rs

### Cost Analytics
- **Cloud storage cost optimization** and tracking
  - Per-tier cost tracking (hot/standard/infrequent/archive/glacier) ✅
  - Multi-cloud support (AWS S3, Azure Blob, GCP Cloud Storage) ✅
  - Cost breakdown (storage, requests, retrieval, transfer) ✅
  - Tier recommendations based on access patterns ✅
  - Cost projections (daily, monthly, yearly) ✅
  - Usage metrics tracking ✅
  - Target: Cloud storage cost optimization ✅
  - **Status:** Implementation complete, integration testing in progress
  - **File:** src/cost_analytics.rs

### Integration Status
- 🔄 **Trait compatibility** with existing BlockStore implementations
  - New modules use ipfrs-core Block type ✅
  - Integration with existing modules in progress 🔄
  - Test coverage for new modules ✅
  - Full integration testing pending 🔄