interpn 0.8.0

N-dimensional interpolation/extrapolation methods, no-std and no-alloc compatible.
Documentation
# InterpN

[Repo](https://github.com/jlogan03/interpn) |
[Python Docs](https://interpnpy.readthedocs.io/en/latest/) |
[Rust Docs](https://docs.rs/interpn/latest/interpn/)

N-dimensional interpolation/extrapolation methods, no-std and no-alloc compatible,
prioritizing correctness, performance, and compatiblity with memory-constrained environments.

Available as a rust crate and python library.

These methods perform zero allocation when evaluated (except, optionally, for the output).
Because of this, they have minimal per-call overhead, and are particularly
effective when examining small numbers of observation points. See the
[performance](https://interpnpy.readthedocs.io/en/latest/perf/) page for detailed benchmarks.

## Features

| Feature →<br>↓ Interpolant Method | Regular<br>Grid | Rectilinear<br>Grid | Json<br>Serialization |
|-----------------------------------|-----------------|---------------------|-----------------------|
| Nearest-Neighbor                  ||||
| Linear                            ||||
| Cubic                             ||||

The methods provided here, while more limited in scope than scipy's,

* are significantly faster under most conditions
* use almost no RAM (and perform no heap allocations at all)
* produce significantly improved floating-point error (by several orders of magnitude)
* are json-serializable using Pydantic
* can also be used easily in web and embedded applications via the Rust library
* are permissively licensed

![ND throughput 1000 obs](./docs/throughput_vs_dims_1000_obs.svg)

See [here](https://interpnpy.readthedocs.io/en/latest/perf/) for more info about quality-of-fit, throughput, and memory usage.

## Installation

```bash
pip install interpn
```

## Profile-Guided Optimization

To build the extension with profile-guided optimization using pre-built profiles, do `sh ./scripts/distr_pgo_install.sh`.
You can also generate your own PGO profiles like `sh ./scripts/distr_pgo_profile.sh`.
after installing this extra compiler dependency:

```bash
rustup component add llvm-tools-preview
```

## Rust Examples

### Regular Grid
```rust
use interpn::{multilinear, multicubic};

// Define a grid
let x = [1.0_f64, 2.0, 3.0, 4.0];
let y = [0.0_f64, 1.0, 2.0, 3.0];

// Grid input for rectilinear method
let grids = &[&x[..], &y[..]];

// Grid input for regular grid method
let dims = [x.len(), y.len()];
let starts = [x[0], y[0]];
let steps = [x[1] - x[0], y[1] - y[0]];

// Values at grid points
let z = [2.0; 16];

// Observation points to interpolate/extrapolate
let xobs = [0.0_f64, 5.0];
let yobs = [-1.0, 3.0];
let obs = [&xobs[..], &yobs[..]];

// Storage for output
let mut out = [0.0; 2];

// Do interpolation
multilinear::regular::interpn(&dims, &starts, &steps, &z, &obs, &mut out);
multicubic::regular::interpn(&dims, &starts, &steps, &z, false, &obs, &mut out);
```

### Rectilinear Grid
```rust
use interpn::{multilinear, multicubic};

// Define a grid
let x = [1.0_f64, 2.0, 3.0, 4.0];
let y = [0.0_f64, 1.0, 2.0, 3.0];

// Grid input for rectilinear method
let grids = &[&x[..], &y[..]];

// Values at grid points
let z = [2.0; 16];

// Points to interpolate/extrapolate
let xobs = [0.0_f64, 5.0];
let yobs = [-1.0, 3.0];
let obs = [&xobs[..], &yobs[..]];

// Storage for output
let mut out = [0.0; 2];

// Do interpolation
multilinear::rectilinear::interpn(grids, &z, &obs, &mut out).unwrap();
multicubic::rectilinear::interpn(grids, &z, false, &obs, &mut out).unwrap();
```

## Python Examples

### Available Methods

```python
import interpn
import numpy as np

# Build grid
x = np.linspace(0.0, 10.0, 5)
y = np.linspace(20.0, 30.0, 4)
grids = [x, y]

xgrid, ygrid = np.meshgrid(x, y, indexing="ij")
zgrid = (xgrid + 2.0 * ygrid)  # Values at grid points

# Grid inputs for true regular grid
dims = [x.size, y.size]
starts = np.array([x[0], y[0]])
steps = np.array([x[1] - x[0], y[1] - y[0]])

# Initialize different interpolators
# Call like `linear_regular.eval([xs, ys])`
linear_regular = interpn.MultilinearRegular.new(dims, starts, steps, zgrid)
cubic_regular = interpn.MulticubicRegular.new(dims, starts, steps, zgrid)
linear_rectilinear = interpn.MultilinearRectilinear.new(grids, zgrid)
cubic_rectilinear = interpn.MulticubicRectilinear.new(grids, zgrid)
```

### Multilinear Interpolation

```python
import interpn
import numpy as np

# Build grid
x = np.linspace(0.0, 10.0, 5)
y = np.linspace(20.0, 30.0, 4)

xgrid, ygrid = np.meshgrid(x, y, indexing="ij")
zgrid = (xgrid + 2.0 * ygrid)  # Values at grid points

# Grid inputs for true regular grid
dims = [x.size, y.size]
starts = np.array([x[0], y[0]])
steps = np.array([x[1] - x[0], y[1] - y[0]])

# Observation points pointed back at the grid
obs = [xgrid.flatten(), ygrid.flatten()]

# Initialize
interpolator = interpn.MultilinearRegular.new(dims, starts, steps, zgrid.flatten())

# Interpolate
out = interpolator.eval(obs)

# Check result
assert np.allclose(out, zgrid.flatten(), rtol=1e-13)

# Serialize and deserialize
roundtrip_interpolator = interpn.MultilinearRegular.model_validate_json(
    interpolator.model_dump_json()
)
out2 = roundtrip_interpolator.eval(obs)

# Check result from roundtrip serialized/deserialized interpolator
assert np.all(out == out2)
```


# License

Licensed under either of

- Apache License, Version 2.0, ([LICENSE-APACHE]LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT]LICENSE-MIT or http://opensource.org/licenses/MIT)

at your option.