indxvec/indices.rs
1use crate::Indices;
2
3impl Indices for &[usize] {
4 /// Inverts an index, eg. from sort index to ranks.
5 /// This is a symmetric operation: any even number of applications
6 /// gives the original index, odd number gives the inverted form.
7 fn invindex(self) -> Vec<usize> {
8 let n = self.len();
9 let mut index: Vec<usize> = vec![0; n];
10 for (i, &indxpos) in self.iter().enumerate() {
11 index[indxpos] = i
12 }
13 index
14 }
15
16 /// Sequentially collects items from `v`, based on sorted (partial) list of subscripts.
17 /// Maintains the order of v, simply leaving out items not represented in the list.
18 /// Is useful for efficient projections to subspaces.
19 fn select<T:Clone>(self, v: &[T]) -> Vec<T> {
20 self.iter().map(|&sub| v[sub].clone()).collect()
21 }
22
23 /// Given a complete (sort) index, extracts indicated values from `v`.
24 /// When ascending is false, collects in the reverse order.
25 /// Used by msort for ascending or descending sort.
26 fn unindex<T>(self, v: &[T], ascending: bool) -> Vec<T>
27 where
28 T: Clone,
29 {
30 if ascending {
31 self.iter().map(|&i| v[i].clone()).collect()
32 } else {
33 self.iter().rev().map(|&i| v[i].clone()).collect()
34 }
35 }
36
37 /// Complement of an index (is symmetric) -
38 /// .complindex() toggles rank index between ascending/descending.
39 /// To toggle sort index between ascending/descending, use the general reversal `revs`:
40 /// `ranks.complindex().invindex()` = ranks.invindex().revs()
41 fn complindex(self) -> Vec<usize> {
42 let n = self.len();
43 let mut index: Vec<usize> = vec![0; n];
44 for (i, &inx) in self.iter().enumerate() {
45 index[i] = n - inx - 1
46 }
47 index
48 }
49
50 /// Pearson's correlation coefficient of two `$[usize]` slices.
51 /// When the inputs are ranks, then this gives Spearman's correlation
52 /// of the original data. However, in general, any other ordinal measures
53 /// could be deployed (not just the ranks).
54 fn ucorrelation(self, v: &[usize]) -> f64 {
55 let (mut sy, mut sxy, mut sx2, mut sy2) = (0_f64, 0_f64, 0_f64, 0_f64);
56 let sx: f64 = self
57 .iter()
58 .zip(v)
59 .map(|(&ux, &uy)| {
60 let x = ux as f64;
61 let y = uy as f64;
62 sy += y;
63 sxy += x * y;
64 sx2 += x * x;
65 sy2 += y * y;
66 x
67 })
68 .sum();
69 let nf = self.len() as f64;
70 (sxy - sx / nf * sy) / ((sx2 - sx / nf * sx) * (sy2 - sy / nf * sy)).sqrt()
71 }
72
73 /// Potentially useful clone-recast of &[usize] to Vec<f64>
74 fn indx_to_f64(self) -> Vec<f64> {
75 self.iter().map(|&x| x as f64).collect()
76 }
77}