1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
//! Low-power serial peripheral interface.
//!
//! [`Lpspi`] implements select embedded HAL SPI traits for coordinating SPI I/O.
//! When using the trait implementations, make sure that [`set_bit_order`](Lpspi::set_bit_order)
//! is correct for your device. These settings apply when the driver internally defines the transaction.
//!
//! This driver also exposes the peripheral's lower-level, hardware-dependent transaction interface.
//! Create a [`Transaction`], then [`enqueue_transaction`](Lpspi::enqueue_transaction) before
//! sending data with [`enqueue_data`](Lpspi::enqueue_data). When using the transaction interface,
//! you're responsible for serializing your data into `u32` SPI words.
//!
//! # Chip selects (CS) for SPI peripherals
//!
//! The iMXRT SPI peripherals have one or more peripheral-controlled chip selects (CS). Using
//! the peripheral-controlled CS means that you do not need a GPIO to coordinate SPI operations.
//! Blocking full-duplex transfers and writes will observe an asserted chip select while data
//! frames are exchanged / written.
//!
//! This driver generally assumes that you're using the peripheral-controlled chip select. If
//! you instead want to manage chip select in software, you should be able to multiplex your own
//! pins, then construct the driver [`without_pins`](Lpspi::without_pins).
//!
//! # Example
//!
//! Initialize an LPSPI with a 1MHz SCK. To understand how to configure the LPSPI
//! peripheral clock, see the [`ccm::lpspi_clk`](crate::ccm::lpspi_clk) documentation.
//!
//! ```no_run
//! use imxrt_hal as hal;
//! use imxrt_ral as ral;
//! # use eh02 as embedded_hal;
//! use embedded_hal::blocking::spi::Transfer;
//! use hal::lpspi::{Lpspi, Pins};
//! use ral::lpspi::LPSPI4;
//!
//! let mut pads = // Handle to all processor pads...
//! # unsafe { imxrt_iomuxc::imxrt1060::Pads::new() };
//!
//! # || -> Option<()> {
//! let spi_pins = Pins {
//! sdo: pads.gpio_b0.p02,
//! sdi: pads.gpio_b0.p01,
//! sck: pads.gpio_b0.p03,
//! pcs0: pads.gpio_b0.p00,
//! };
//!
//! let mut spi4 = unsafe { LPSPI4::instance() };
//! let mut spi = Lpspi::new(
//! spi4,
//! spi_pins,
//! );
//!
//! # const LPSPI_CLK_HZ: u32 = 1;
//! spi.disabled(|spi| {
//! spi.set_clock_hz(LPSPI_CLK_HZ, 1_000_000);
//! });
//!
//! let mut buffer: [u8; 3] = [1, 2, 3];
//! spi.transfer(&mut buffer).ok()?;
//!
//! let (spi4, pins) = spi.release();
//!
//! // Re-construct without pins:
//! let mut spi = Lpspi::without_pins(spi4);
//! # Some(()) }();
//! ```
//!
//! # Limitations
//!
//! Due to [a hardware defect][1], this driver does not yet support the EH02 SPI transaction API.
//! An early iteration of this driver reproduced the issue discussed in that forum. This driver may
//! be able to work around the defect in software, but it hasn't been explored.
//!
//! [1]: https://community.nxp.com/t5/i-MX-RT/RT1050-LPSPI-last-bit-not-completing-in-continuous-mode/m-p/898460
//!
//! [`Transaction`] exposes the continuous / continuing flags, so you're free to model advanced
//! transactions. However, keep in mind that disabling the receiver during a continuous transaction
//! may not work as expected.
use crate::iomuxc::{consts, lpspi};
use crate::ral;
pub use eh02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
/// Data direction.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Direction {
/// Transmit direction (leaving the peripheral).
Tx,
/// Receive direction (entering the peripheral).
Rx,
}
/// Bit order.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
#[repr(u32)]
pub enum BitOrder {
/// Data is transferred most significant bit first (default).
#[default]
Msb,
/// Data is transferred least significant bit first.
Lsb,
}
/// Possible errors when interfacing the LPSPI.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LpspiError {
/// The transaction frame size is incorrect.
///
/// The frame size, in bits, must be between 8 bits and
/// 4095 bits.
FrameSize,
/// FIFO error in the given direction.
Fifo(Direction),
/// Bus is busy at the start of a transfer.
Busy,
/// Caller provided no data.
NoData,
}
/// An LPSPI transaction definition.
///
/// The transaction defines how many bits the driver sends or recieves.
/// It also describes
///
/// - endianness
/// - bit order
/// - transmit and receive masking
/// - continuous and continuing transfers (default: both disabled)
///
/// The LPSPI enqueues the transaction data into the transmit
/// FIFO. When it pops the values from the FIFO, the values take
/// effect immediately. This may affect, or abort, any ongoing
/// transactions. Consult the reference manual to understand when
/// you should enqueue transaction definitions, since it may only
/// be supported on word / frame boundaries.
///
/// Construct `Transaction` with [`new`](Self::new), and supply
/// the number of **bits** to transmit per frame.
///
/// ```
/// use imxrt_hal as hal;
/// use hal::lpspi::Transaction;
///
/// // Send one u32.
/// let mut transaction
/// = Transaction::new(8 * core::mem::size_of::<u32>() as u16);
/// ```
///
/// Once constructed, manipulate the public members to change the
/// configuration.
///
/// # Continuous transactions
///
/// The pseudo-code below shows how to set [`continuous`](Self::continuous) and
/// [`continuing`](Self::continuing) to model a continuous transaction. Keep in
/// mind the hardware limitations; see the [module-level docs](crate::lpspi#limitations) for
/// details.
///
/// ```
/// use imxrt_hal as hal;
/// use hal::lpspi::Transaction;
///
/// // Skipping LPSPI initialization; see module-level example.
///
/// // Start byte exchange as a continuous transaction. Each frame
/// // exchanges one byte (eight bits) with a device.
/// # || -> Result<(), hal::lpspi::LpspiError> {
/// let mut transaction = Transaction::new(8)?;
/// transaction.continuous = true;
/// // Enqueue transaction with LPSPI...
/// // Enqueue one byte with LPSPI... <-- PCS asserts here.
///
/// # let buffer: [u8; 5] = [0; 5];
/// for byte in buffer {
/// // Set 'continuing' to indicate that the next
/// // transaction continues the previous one...
/// transaction.continuing = true;
///
/// // Enqueue transaction with LPSPI...
/// // Enqueue byte with LPSPI...
/// }
///
/// transaction.continuous = false;
/// transaction.continuing = false;
/// // Enqueue transaction with LPSPI... <-- PCS de-asserts here.
/// # Ok(()) }().unwrap();
/// ```
pub struct Transaction {
/// Enable byte swap.
///
/// When enabled (`true`), swap bytes with the `u32` word. This allows
/// you to change the endianness of the 32-bit word transfer. The
/// default is `false`.
pub byte_swap: bool,
/// Bit order.
///
/// See [`BitOrder`] for details. The default is [`BitOrder::Msb`].
pub bit_order: BitOrder,
/// Mask the received data.
///
/// If `true`, the peripheral discards received data. Use this
/// when you only care about sending data. The default is `false`;
/// the peripheral puts received data in the receive FIFO.
pub receive_data_mask: bool,
/// Mask the transmit data.
///
/// If `true`, the peripheral doesn't send any data. Use this when
/// you only care about receiving data. The default is `false`;
/// the peripheral expects to send data using the transmit FIFO.
pub transmit_data_mask: bool,
/// Indicates (`true`) the start of a continuous transfer.
///
/// If set, the peripherals chip select will remain asserted after
/// exchanging the frame. This allows you to enqueue new commands
/// and data words within the same transaction. Those new commands
/// should have [`continuing`](Self::continuing) set to `true`.
///
/// The default is `false`; chip select de-asserts after exchanging
/// the frame. To stop a continuous transfer, enqueue a new `Transaction`
/// in which this flag, and `continuing`, is false.
pub continuous: bool,
/// Indicates (`true`) that this command belongs to a previous transaction.
///
/// Set this to indicate that this new `Transaction` belongs to a previous
/// `Transaction`, one that had [`continuous`](Self::continuous) set.
/// The default value is `false`.
pub continuing: bool,
frame_size: u16,
}
impl Transaction {
/// Defines a transaction for a `u32` buffer.
///
/// After successfully defining a transaction of this buffer,
/// supply it to the LPSPI driver, then start sending the
/// data.
///
/// Returns an error if any are true:
///
/// - the buffer is empty.
/// - there's more than 128 elements in the buffer.
pub fn new_u32s(data: &[u32]) -> Result<Self, LpspiError> {
Transaction::new_words(data)
}
fn new_words<W>(data: &[W]) -> Result<Self, LpspiError> {
Transaction::new(8 * core::mem::size_of_val(data) as u16)
}
/// Define a transaction by specifying the frame size, in bits.
///
/// The frame size describes the number of bits that will be transferred and
/// received during the next transaction. Specifically, it describes the number
/// of bits for which the PCS pin signals a transaction.
///
/// # Requirements
///
/// - `frame_size` fits within 12 bits; the implementation enforces this maximum value.
/// - The minimum value for `frame_size` is 8; the implementation enforces this minimum
/// value.
pub fn new(frame_size: u16) -> Result<Self, LpspiError> {
const MIN_FRAME_SIZE: u16 = 8;
const MAX_FRAME_SIZE: u16 = 1 << 12;
if (MIN_FRAME_SIZE..MAX_FRAME_SIZE).contains(&frame_size) {
Ok(Self {
byte_swap: false,
bit_order: Default::default(),
receive_data_mask: false,
transmit_data_mask: false,
frame_size: frame_size - 1,
continuing: false,
continuous: false,
})
} else {
Err(LpspiError::FrameSize)
}
}
}
/// Sets the clock speed parameters.
///
/// This should only happen when the LPSPI peripheral is disabled.
fn set_spi_clock(source_clock_hz: u32, spi_clock_hz: u32, reg: &ral::lpspi::RegisterBlock) {
let mut div = source_clock_hz / spi_clock_hz;
if source_clock_hz / div > spi_clock_hz {
div += 1;
}
// 0 <= div <= 255, and the true coefficient is really div + 2
let div = div.saturating_sub(2).clamp(0, 255);
ral::write_reg!(
ral::lpspi,
reg,
CCR,
SCKDIV: div,
// Both of these delays are arbitrary choices, and they should
// probably be configurable by the end-user.
DBT: div / 2,
SCKPCS: 0x1F,
PCSSCK: 0x1F
);
}
/// An LPSPI driver.
///
/// The driver exposes low-level methods for coordinating
/// DMA transfers. However, you may find it easier to use the
/// [`dma`](crate::dma) interface to coordinate DMA transfers.
///
/// The driver implements `embedded-hal` SPI traits. You should prefer
/// these implementations for their ease of use.
///
/// See the [module-level documentation](crate::lpspi) for an example
/// of how to construct this driver.
pub struct Lpspi<P, const N: u8> {
lpspi: ral::lpspi::Instance<N>,
pins: P,
bit_order: BitOrder,
}
/// Pins for a LPSPI device.
///
/// Consider using type aliases to simplify your usage:
///
/// ```no_run
/// use imxrt_hal as hal;
/// use imxrt_iomuxc::imxrt1060::gpio_b0::*;
///
/// // SPI pins used in my application
/// type LpspiPins = hal::lpspi::Pins<
/// GPIO_B0_02,
/// GPIO_B0_01,
/// GPIO_B0_03,
/// GPIO_B0_00,
/// >;
///
/// // Helper type for your SPI peripheral
/// type Lpspi<const N: u8> = hal::lpspi::Lpspi<LpspiPins, N>;
/// ```
pub struct Pins<SDO, SDI, SCK, PCS0> {
/// Serial data out
///
/// Data travels from the SPI host controller to the SPI device.
pub sdo: SDO,
/// Serial data in
///
/// Data travels from the SPI device to the SPI host controller.
pub sdi: SDI,
/// Serial clock
pub sck: SCK,
/// Chip select 0
///
/// (PCSx) convention matches the hardware.
pub pcs0: PCS0,
}
impl<SDO, SDI, SCK, PCS0, const N: u8> Lpspi<Pins<SDO, SDI, SCK, PCS0>, N>
where
SDO: lpspi::Pin<Module = consts::Const<N>, Signal = lpspi::Sdo>,
SDI: lpspi::Pin<Module = consts::Const<N>, Signal = lpspi::Sdi>,
SCK: lpspi::Pin<Module = consts::Const<N>, Signal = lpspi::Sck>,
PCS0: lpspi::Pin<Module = consts::Const<N>, Signal = lpspi::Pcs0>,
{
/// Create a new LPSPI driver from the RAL LPSPI instance and a set of pins.
///
/// When this call returns, the LPSPI pins are configured for their function.
/// The peripheral is enabled after reset. The LPSPI clock speed is unspecified.
/// The mode is [`MODE_0`].
pub fn new(lpspi: ral::lpspi::Instance<N>, mut pins: Pins<SDO, SDI, SCK, PCS0>) -> Self {
lpspi::prepare(&mut pins.sdo);
lpspi::prepare(&mut pins.sdi);
lpspi::prepare(&mut pins.sck);
lpspi::prepare(&mut pins.pcs0);
Self::init(lpspi, pins)
}
}
impl<const N: u8> Lpspi<(), N> {
/// Create a new LPSPI driver from the RAL LPSPI instance.
///
/// This is similar to [`new()`](Self::new), but it does not configure
/// pins. You're responsible for configuring pins, and for making sure
/// the pin configuration doesn't change while this driver is in use.
pub fn without_pins(lpspi: ral::lpspi::Instance<N>) -> Self {
Self::init(lpspi, ())
}
}
impl<P, const N: u8> Lpspi<P, N> {
/// The peripheral instance.
pub const N: u8 = N;
fn init(lpspi: ral::lpspi::Instance<N>, pins: P) -> Self {
let mut spi = Lpspi {
lpspi,
pins,
bit_order: BitOrder::default(),
};
ral::write_reg!(ral::lpspi, spi.lpspi, CR, RST: RST_1);
ral::write_reg!(ral::lpspi, spi.lpspi, CR, RST: RST_0);
ral::write_reg!(
ral::lpspi,
spi.lpspi,
CFGR1,
MASTER: MASTER_1,
SAMPLE: SAMPLE_1
);
Disabled::new(&mut spi.lpspi).set_mode(MODE_0);
ral::write_reg!(ral::lpspi, spi.lpspi, FCR, RXWATER: 0xF, TXWATER: 0xF);
ral::write_reg!(ral::lpspi, spi.lpspi, CR, MEN: MEN_1);
spi
}
/// Indicates if the driver is (`true`) or is not (`false`) enabled.
pub fn is_enabled(&self) -> bool {
ral::read_reg!(ral::lpspi, self.lpspi, CR, MEN == MEN_1)
}
/// Enable (`true`) or disable (`false`) the peripheral.
pub fn set_enable(&mut self, enable: bool) {
ral::modify_reg!(ral::lpspi, self.lpspi, CR, MEN: enable as u32)
}
/// Reset the driver.
///
/// Note that this may not not reset all peripheral state, like the
/// enabled state.
pub fn reset(&mut self) {
ral::modify_reg!(ral::lpspi, self.lpspi, CR, RST: RST_1);
while ral::read_reg!(ral::lpspi, self.lpspi, CR, RST == RST_1) {
ral::modify_reg!(ral::lpspi, self.lpspi, CR, RST: RST_0);
}
}
/// Release the SPI driver components.
///
/// This does not change any component state; it releases the components as-is.
/// If you need to obtain the registers in a known, good state, consider calling
/// methods like [`reset()`](Self::reset) before releasing the registers.
pub fn release(self) -> (ral::lpspi::Instance<N>, P) {
(self.lpspi, self.pins)
}
/// Returns the bit order configuration.
///
/// See notes in [`set_bit_order`](Lpspi::set_bit_order) to
/// understand when this configuration takes effect.
pub fn bit_order(&self) -> BitOrder {
self.bit_order
}
/// Set the bit order configuration.
///
/// This applies to all higher-level write and transfer operations.
/// If you're using the [`Transaction`] API with manual word reads
/// and writes, set the configuration as part of the transaction.
pub fn set_bit_order(&mut self, bit_order: BitOrder) {
self.bit_order = bit_order;
}
/// Temporarily disable the LPSPI peripheral.
///
/// The handle to a [`Disabled`](crate::lpspi::Disabled) driver lets you modify
/// LPSPI settings that require a fully disabled peripheral. This will clear the transmit
/// and receive FIFOs.
pub fn disabled<R>(&mut self, func: impl FnOnce(&mut Disabled<N>) -> R) -> R {
self.clear_fifos();
let mut disabled = Disabled::new(&mut self.lpspi);
func(&mut disabled)
}
/// Read the status register.
pub fn status(&self) -> Status {
Status::from_bits_truncate(ral::read_reg!(ral::lpspi, self.lpspi, SR))
}
/// Clear the status flags.
///
/// To clear status flags, set them high, then call `clear_status()`.
///
/// The implementation will ensure that only the W1C bits are written, so it's
/// OK to supply `Status::all()` to clear all bits.
pub fn clear_status(&self, flags: Status) {
let flags = flags & Status::W1C;
ral::write_reg!(ral::lpspi, self.lpspi, SR, flags.bits());
}
/// Read the interrupt enable bits.
pub fn interrupts(&self) -> Interrupts {
Interrupts::from_bits_truncate(ral::read_reg!(ral::lpspi, self.lpspi, IER))
}
/// Set the interrupt enable bits.
///
/// This writes the bits described by `interrupts` as is to the register.
/// To modify the existing interrupts flags, you should first call [`interrupts`](Lpspi::interrupts)
/// to get the current state, then modify that state.
pub fn set_interrupts(&self, interrupts: Interrupts) {
ral::write_reg!(ral::lpspi, self.lpspi, IER, interrupts.bits());
}
/// Clear any existing data in the SPI receive or transfer FIFOs.
#[inline]
pub fn clear_fifo(&mut self, direction: Direction) {
match direction {
Direction::Tx => ral::modify_reg!(ral::lpspi, self.lpspi, CR, RTF: RTF_1),
Direction::Rx => ral::modify_reg!(ral::lpspi, self.lpspi, CR, RRF: RRF_1),
}
}
/// Clear both FIFOs.
pub fn clear_fifos(&mut self) {
ral::modify_reg!(ral::lpspi, self.lpspi, CR, RTF: RTF_1, RRF: RRF_1);
}
/// Returns the watermark level for the given direction.
#[inline]
pub fn watermark(&self, direction: Direction) -> u8 {
(match direction {
Direction::Rx => ral::read_reg!(ral::lpspi, self.lpspi, FCR, RXWATER),
Direction::Tx => ral::read_reg!(ral::lpspi, self.lpspi, FCR, TXWATER),
}) as u8
}
/// Returns the FIFO status.
#[inline]
pub fn fifo_status(&self) -> FifoStatus {
let (rxcount, txcount) = ral::read_reg!(ral::lpspi, self.lpspi, FSR, RXCOUNT, TXCOUNT);
FifoStatus {
rxcount: rxcount as u16,
txcount: txcount as u16,
}
}
/// Simply read whatever is in the receiver data register.
fn read_data_unchecked(&self) -> u32 {
ral::read_reg!(ral::lpspi, self.lpspi, RDR)
}
/// Read the data register.
///
/// Returns `None` if the receive FIFO is empty. Otherwise, returns the complete
/// read of the register. You're reponsible for interpreting the raw value as
/// a data word, depending on the frame size.
pub fn read_data(&mut self) -> Option<u32> {
if ral::read_reg!(ral::lpspi, self.lpspi, RSR, RXEMPTY == RXEMPTY_0) {
Some(self.read_data_unchecked())
} else {
None
}
}
/// Check for any receiver errors.
fn recv_ok(&self) -> Result<(), LpspiError> {
let status = self.status();
if status.intersects(Status::RECEIVE_ERROR) {
Err(LpspiError::Fifo(Direction::Rx))
} else {
Ok(())
}
}
/// Place `word` into the transmit FIFO.
///
/// This will result in the value being sent from the LPSPI.
/// You're responsible for making sure that the transmit FIFO can
/// fit this word.
pub fn enqueue_data(&self, word: u32) {
ral::write_reg!(ral::lpspi, self.lpspi, TDR, word);
}
pub(crate) fn wait_for_transmit_fifo_space(&mut self) -> Result<(), LpspiError> {
loop {
let status = self.status();
if status.intersects(Status::TRANSMIT_ERROR) {
return Err(LpspiError::Fifo(Direction::Tx));
}
let fifo_status = self.fifo_status();
if !fifo_status.is_full(Direction::Tx) {
return Ok(());
}
}
}
/// Place a transaction definition into the transmit FIFO.
///
/// Once this definition is popped from the transmit FIFO, this may
/// affect, or abort, any ongoing transactions.
///
/// You're responsible for making sure there's space in the transmit
/// FIFO for this transaction command.
pub fn enqueue_transaction(&mut self, transaction: &Transaction) {
ral::modify_reg!(ral::lpspi, self.lpspi, TCR,
LSBF: transaction.bit_order as u32,
BYSW: transaction.byte_swap as u32,
RXMSK: transaction.receive_data_mask as u32,
TXMSK: transaction.transmit_data_mask as u32,
FRAMESZ: transaction.frame_size as u32,
CONT: transaction.continuous as u32,
CONTC: transaction.continuing as u32
);
}
/// Exchanges data with the SPI device.
///
/// This routine uses continuous transfers to perform the transaction, no matter the
/// primitive type. There's an optimization for &[u32] that we're missing; in this case,
/// we don't necessarily need to use continuous transfers. The frame size could be set to
/// 8 * buffer.len() * sizeof(u32), and we copy user words into the transmit queue as-is.
/// But handling the packing of u8s and u16s into the u32 transmit queue in software is
/// extra work, work that's effectively achieved when we use continuous transfers.
/// We're guessing that the time to pop a transmit command from the queue is much faster
/// than the time taken to pop from the data queue, so the extra queue utilization shouldn't
/// matter.
fn exchange<W>(&mut self, buffer: &mut [W]) -> Result<(), LpspiError>
where
W: Word,
{
if self.status().intersects(Status::BUSY) {
return Err(LpspiError::Busy);
} else if buffer.is_empty() {
return Err(LpspiError::NoData);
}
self.clear_fifos();
let mut transaction = Transaction::new(8 * core::mem::size_of::<W>() as u16)?;
transaction.bit_order = self.bit_order();
transaction.continuous = true;
let mut tx_idx = 0usize;
let mut rx_idx = 0usize;
while tx_idx < buffer.len() && rx_idx < buffer.len() {
if tx_idx < buffer.len() {
let word = buffer[tx_idx];
self.wait_for_transmit_fifo_space()?;
self.enqueue_transaction(&transaction);
self.wait_for_transmit_fifo_space()?;
self.enqueue_data(word.into());
transaction.continuing = true;
tx_idx += 1;
}
if rx_idx < buffer.len() {
self.recv_ok()?;
if let Some(word) = self.read_data() {
buffer[rx_idx] = word.try_into().unwrap_or(W::MAX);
rx_idx += 1;
}
}
}
transaction.continuing = false;
transaction.continuous = false;
self.wait_for_transmit_fifo_space()?;
self.enqueue_transaction(&transaction);
Ok(())
}
/// Write data to the transmit queue without subsequently reading
/// the receive queue.
///
/// Use this method when you know that the receiver queue is disabled
/// (RXMASK high in TCR).
///
/// Similar to `exchange`, this is using continuous transfers for all supported primitives.
fn write_no_read<W>(&mut self, buffer: &[W]) -> Result<(), LpspiError>
where
W: Word,
{
if self.status().intersects(Status::BUSY) {
return Err(LpspiError::Busy);
} else if buffer.is_empty() {
return Err(LpspiError::NoData);
}
self.clear_fifos();
let mut transaction = Transaction::new(8 * core::mem::size_of::<W>() as u16)?;
transaction.bit_order = self.bit_order();
transaction.continuous = true;
transaction.receive_data_mask = true;
for word in buffer {
self.wait_for_transmit_fifo_space()?;
self.enqueue_transaction(&transaction);
self.wait_for_transmit_fifo_space()?;
self.enqueue_data((*word).into());
transaction.continuing = true;
}
transaction.continuing = false;
transaction.continuous = false;
self.wait_for_transmit_fifo_space()?;
self.enqueue_transaction(&transaction);
Ok(())
}
/// Let the peripheral act as a DMA source.
///
/// After this call, the peripheral will signal to the DMA engine whenever
/// it has data available to read.
pub fn enable_dma_receive(&mut self) {
ral::modify_reg!(ral::lpspi, self.lpspi, FCR, RXWATER: 0); // No watermarks; affects DMA signaling
ral::modify_reg!(ral::lpspi, self.lpspi, DER, RDDE: 1);
}
/// Stop the peripheral from acting as a DMA source.
///
/// See the DMA chapter in the reference manual to understand when this
/// should be called in the DMA transfer lifecycle.
pub fn disable_dma_receive(&mut self) {
while ral::read_reg!(ral::lpspi, self.lpspi, DER, RDDE == 1) {
ral::modify_reg!(ral::lpspi, self.lpspi, DER, RDDE: 0);
}
}
/// Let the peripheral act as a DMA destination.
///
/// After this call, the peripheral will signal to the DMA engine whenever
/// it has free space in its transfer buffer.
pub fn enable_dma_transmit(&mut self) {
ral::modify_reg!(ral::lpspi, self.lpspi, FCR, TXWATER: 0); // No watermarks; affects DMA signaling
ral::modify_reg!(ral::lpspi, self.lpspi, DER, TDDE: 1);
}
/// Stop the peripheral from acting as a DMA destination.
///
/// See the DMA chapter in the reference manual to understand when this
/// should be called in the DMA transfer lifecycle.
pub fn disable_dma_transmit(&mut self) {
while ral::read_reg!(ral::lpspi, self.lpspi, DER, TDDE == 1) {
ral::modify_reg!(ral::lpspi, self.lpspi, DER, TDDE: 0);
}
}
/// Produces a pointer to the receiver data register.
///
/// You should use this pointer when coordinating a DMA transfer.
/// You're not expected to read from this pointer in software.
pub fn rdr(&self) -> *const ral::RORegister<u32> {
core::ptr::addr_of!(self.lpspi.RDR)
}
/// Produces a pointer to the transfer data register.
///
/// You should use this pointer when coordinating a DMA transfer.
/// You're not expected to read from this pointer in software.
pub fn tdr(&self) -> *const ral::WORegister<u32> {
core::ptr::addr_of!(self.lpspi.TDR)
}
}
bitflags::bitflags! {
/// Status flags for the LPSPI interface.
pub struct Status : u32 {
/// Module busy flag.
///
/// This flag is read only.
const BUSY = 1 << 24;
//
// Start W1C bits.
//
/// Data match flag.
///
/// Indicates that received data has matched one or both of the match
/// fields. To clear this flag, write this bit to the status register
/// (W1C).
const DATA_MATCH = 1 << 13;
/// Receive error flag.
///
/// Set when the receive FIFO has overflowed. Before clearing this bit,
/// empty the receive FIFO. Then, write this bit to clear the flag (W1C).
const RECEIVE_ERROR = 1 << 12;
/// Transmit error flag.
///
/// Set when the transmit FIFO has underruns. Before clearing this bit,
/// end the transfer. Then, write this bit to clear the flag (W1C).
const TRANSMIT_ERROR = 1 << 11;
/// Transfer complete flag.
///
/// Set when the LPSPI returns to an idle state, and the transmit FIFO
/// is empty. To clear this flag, write this bit (W1C).
const TRANSFER_COMPLETE = 1 << 10;
/// Frame complete flag.
///
/// Set at the end of each frame transfer, when PCS negates. To clear this
/// flag, write this bit (W1C).
const FRAME_COMPLETE = 1 << 9;
/// Word complete flag.
///
/// Set when the last bit of a received word is sampled. To clear this flag, write
/// this bit (W1C).
const WORD_COMPLETE = 1 << 8;
//
// End W1C bits.
//
/// Receive data flag.
///
/// Set when the number of words in the receive FIFO is greater than the watermark.
/// This flag is read only. To clear the flag, exhaust the receive FIFO.
const RECEIVE_DATA = 1 << 1;
/// Transmit data flag.
///
/// Set when the number of words in the transmit FIFO is less than or equal to the
/// watermark. This flag is read only. TO clear the flag, fill the transmit FIFO.
const TRANSMIT_DATA = 1 << 0;
}
}
impl Status {
const W1C: Self = Self::from_bits_truncate(
Self::DATA_MATCH.bits()
| Self::RECEIVE_ERROR.bits()
| Self::TRANSMIT_ERROR.bits()
| Self::TRANSFER_COMPLETE.bits()
| Self::FRAME_COMPLETE.bits()
| Self::WORD_COMPLETE.bits(),
);
}
/// The number of words in each FIFO.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct FifoStatus {
/// Number of words in the receive FIFO.
pub rxcount: u16,
/// Number of words in the transmit FIFO.
pub txcount: u16,
}
impl FifoStatus {
/// Indicates if the FIFO is full for the given direction.
#[inline]
pub const fn is_full(self, direction: Direction) -> bool {
/// See PARAM register docs.
const MAX_FIFO_SIZE: u16 = 16;
let count = match direction {
Direction::Tx => self.txcount,
Direction::Rx => self.rxcount,
};
count >= MAX_FIFO_SIZE
}
}
bitflags::bitflags! {
/// Interrupt flags.
///
/// A high bit indicates that the condition generates an interrupt.
/// See the status bits for more information.
pub struct Interrupts : u32 {
/// Data match interrupt enable.
const DATA_MATCH = 1 << 13;
/// Receive error interrupt enable.
const RECEIVE_ERROR = 1 << 12;
/// Transmit error interrupt enable.
const TRANSMIT_ERROR = 1 << 11;
/// Transmit complete interrupt enable.
const TRANSMIT_COMPLETE = 1 << 10;
/// Frame complete interrupt enable.
const FRAME_COMPLETE = 1 << 9;
/// Word complete interrupt enable.
const WORD_COMPLETE = 1 << 8;
/// Receive data interrupt enable.
const RECEIVE_DATA = 1 << 1;
/// Transmit data interrupt enable.
const TRANSMIT_DATA = 1 << 0;
}
}
/// An LPSPI peripheral which is temporarily disabled.
pub struct Disabled<'a, const N: u8> {
lpspi: &'a ral::lpspi::Instance<N>,
men: bool,
}
impl<'a, const N: u8> Disabled<'a, N> {
fn new(lpspi: &'a mut ral::lpspi::Instance<N>) -> Self {
let men = ral::read_reg!(ral::lpspi, lpspi, CR, MEN == MEN_1);
ral::modify_reg!(ral::lpspi, lpspi, CR, MEN: MEN_0);
Self { lpspi, men }
}
/// Set the SPI mode for the peripheral
pub fn set_mode(&mut self, mode: Mode) {
// This could probably be changed when we're not disabled.
// However, there's rules about when you can read TCR.
// Specifically, reading TCR while it's being loaded from
// the transmit FIFO could result in an incorrect reading.
// Only permitting this when we're disabled might help
// us avoid something troublesome.
ral::modify_reg!(
ral::lpspi,
self.lpspi,
TCR,
CPOL: ((mode.polarity == Polarity::IdleHigh) as u32),
CPHA: ((mode.phase == Phase::CaptureOnSecondTransition) as u32)
);
}
/// Set the LPSPI clock speed (Hz).
///
/// `source_clock_hz` is the LPSPI peripheral clock speed. To specify the
/// peripheral clock, see the [`ccm::lpspi_clk`](crate::ccm::lpspi_clk) documentation.
pub fn set_clock_hz(&mut self, source_clock_hz: u32, clock_hz: u32) {
set_spi_clock(source_clock_hz, clock_hz, self.lpspi);
}
/// Set the watermark level for a given direction.
///
/// Returns the watermark level committed to the hardware. This may be different
/// than the supplied `watermark`, since it's limited by the hardware.
///
/// When `direction == Direction::Rx`, the receive data flag is set whenever the
/// number of words in the receive FIFO is greater than `watermark`.
///
/// When `direction == Direction::Tx`, the transmit data flag is set whenever the
/// the number of words in the transmit FIFO is less than, or equal, to `watermark`.
#[inline]
pub fn set_watermark(&mut self, direction: Direction, watermark: u8) -> u8 {
let max_watermark = match direction {
Direction::Rx => 1 << ral::read_reg!(ral::lpspi, self.lpspi, PARAM, RXFIFO),
Direction::Tx => 1 << ral::read_reg!(ral::lpspi, self.lpspi, PARAM, TXFIFO),
};
let watermark = watermark.min(max_watermark - 1);
match direction {
Direction::Rx => {
ral::modify_reg!(ral::lpspi, self.lpspi, FCR, RXWATER: watermark as u32)
}
Direction::Tx => {
ral::modify_reg!(ral::lpspi, self.lpspi, FCR, TXWATER: watermark as u32)
}
}
watermark
}
}
impl<const N: u8> Drop for Disabled<'_, N> {
fn drop(&mut self) {
ral::modify_reg!(ral::lpspi, self.lpspi, CR, MEN: self.men as u32);
}
}
impl<P, const N: u8> eh02::blocking::spi::Transfer<u8> for Lpspi<P, N> {
type Error = LpspiError;
fn transfer<'a>(&mut self, words: &'a mut [u8]) -> Result<&'a [u8], Self::Error> {
self.exchange(words)?;
Ok(words)
}
}
impl<P, const N: u8> eh02::blocking::spi::Transfer<u16> for Lpspi<P, N> {
type Error = LpspiError;
fn transfer<'a>(&mut self, words: &'a mut [u16]) -> Result<&'a [u16], Self::Error> {
self.exchange(words)?;
Ok(words)
}
}
impl<P, const N: u8> eh02::blocking::spi::Transfer<u32> for Lpspi<P, N> {
type Error = LpspiError;
fn transfer<'a>(&mut self, words: &'a mut [u32]) -> Result<&'a [u32], Self::Error> {
self.exchange(words)?;
Ok(words)
}
}
impl<P, const N: u8> eh02::blocking::spi::Write<u8> for Lpspi<P, N> {
type Error = LpspiError;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.write_no_read(words)
}
}
impl<P, const N: u8> eh02::blocking::spi::Write<u16> for Lpspi<P, N> {
type Error = LpspiError;
fn write(&mut self, words: &[u16]) -> Result<(), Self::Error> {
self.write_no_read(words)
}
}
impl<P, const N: u8> eh02::blocking::spi::Write<u32> for Lpspi<P, N> {
type Error = LpspiError;
fn write(&mut self, words: &[u32]) -> Result<(), Self::Error> {
self.write_no_read(words)
}
}
// Not supporting WriteIter right now. Since we don't know how many bytes we're
// going to write, we can't specify the frame size. There might be ways around
// this by playing with CONTC and CONT bits, but we can evaluate that later.
/// Describes SPI words that can participate in transactions.
trait Word: Copy + Into<u32> + TryFrom<u32> {
const MAX: Self;
}
impl Word for u8 {
const MAX: u8 = u8::MAX;
}
impl Word for u16 {
const MAX: u16 = u16::MAX;
}
impl Word for u32 {
const MAX: u32 = u32::MAX;
}